Skip to Content
MilliporeSigma
  • The protective role of tea polyphenols against methylmercury-induced neurotoxic effects in rat cerebral cortex via inhibition of oxidative stress.

The protective role of tea polyphenols against methylmercury-induced neurotoxic effects in rat cerebral cortex via inhibition of oxidative stress.

Free radical research (2014-05-14)
W Liu, Z Xu, T Yang, Y Deng, B Xu, S Feng, Y Li
ABSTRACT

Methylmercury (MeHg) is a ubiquitous environmental contaminant that could induce oxidative stress and an indirect glutamate (Glu)-mediated excitotoxicity. However, the underlying mechanisms through which MeHg affects the central nervous system have not been fully elucidated, and little has been known of the interaction between oxidative stress and Glu dyshomeostasis in MeHg neurotoxicity. Therefore, rats were administrated with different MeHg concentrations (0, 4, and 12 Ī¼mol/kg) to evaluate the neurotoxic effects in cerebral cortex. Moreover, we have investigated the neuroprotective role of tea polyphenols (TP), a natural antioxidant that has a formidable free radical scavenge ability, against MeHg-induced neurotoxicity. Eighty rats were randomly divided into five groups: control, TP control, MeHg-treated (4 and 12 Ī¼mol/kg), and TP pretreated (1 mmol/kg). Administration of MeHg at 12 Ī¼mol/kg for 4 weeks significantly increased total Hg and ROS levels in cerebral cortex. In addition, MeHg reduced non-enzymatic (non-protein sulfhydryl) and enzymatic (SOD and GSH-Px) antioxidants, up-regulated Nrf2, HO-1, and Ī³-GCS expression. Moreover, MeHg-induced ROS over-production appeared to inhibit the activities of GS, down-regulated GLAST and GLT-1 expression in cerebral cortex. Pretreatment with TP at a dose of 1 mmol/kg significantly prevented MeHg-induced oxidative stress and Glu uptake/metabolism disorders in cerebral cortex. In conclusion, the results suggested that oxidative stress resulting from excessive ROS formation plays a critical role in MeHg neurotoxicity. TP possesses the ability to attenuate MeHg-induced neurotoxic effects through its antioxidative properties.

MATERIALS
Product Number
Brand
Product Description

Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, puriss., ≥99.5% (GC), meets analytical specification of Ph. Eur., BP, USP, crystalline (detached)
Supelco
Phenol solution, 100 Ī¼g/mL in acetonitrile, PESTANALĀ®, analytical standard
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol solution, BioReagent, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, for molecular biology
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Phenol solution, BioReagent, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, for molecular biology
Supelco
Phenol, PESTANALĀ®, analytical standard
Sigma-Aldrich
Phenol, ≥99.0%
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phenol, JIS special grade, ≥99.0%
Sigma-Aldrich
Phenol, ≥99.0%
Sigma-Aldrich
Phenol, SAJ first grade, ≥98.0%
USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Phenol, natural, 97%, FG
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phenol, unstabilized, ReagentPlusĀ®, ā‰„99%