Skip to Content
MilliporeSigma
  • Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies.

Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies.

mAbs (2015-01-23)
Xiufeng Wu, Arlene J Sereno, Flora Huang, Kai Zhang, Micheal Batt, Jonathan R Fitchett, Dongmei He, Heather L Rick, Elaine M Conner, Stephen J Demarest
ABSTRACT

Immunoglobulins and T cell receptors (TCRs) share common sequences and structures. With the goal of creating novel bispecific antibodies (BsAbs), we generated chimeric molecules, denoted IgG_TCRs, where the Fv regions of several antibodies were fused to the constant domains of the α/β TCR. Replacing CH1 with Cα and CL with Cβ, respectively, was essential for achieving at least partial heavy chain/light chain assembly. Further optimization of the linker regions between the variable and constant domains, as well as replacement of the large FG loop of Cβ with a canonical β-turn, was necessary to consistently obtain full heavy chain/light chain assembly. The optimized IgG_TCR molecules were evaluated biophysically and shown to maintain the binding properties of their parental antibodies. A few BsAbs were generated by co-expressing native Fabs and IgG_TCR Fabs within the same molecular construct. We demonstrate that the IgG_TCR designs steered each of the light chains within the constructs to specifically pair with their cognate heavy chain counterparts. We did find that even with complete constant domain specificity between the CH1/CL and Cα/Cβ domains of the Fabs, strong variable domain interactions can dominate the pairing specificity and induce some mispairing. Overall, the IgG_TCR designs described here are a first step toward the generation of novel BsAbs that may be directed toward the treatment of multi-faceted and complex diseases.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, purified immunoglobulin, buffered aqueous solution
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
SAFC
BIS-TRIS
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl