Skip to Content
MilliporeSigma

Superoxide-mediated decomposition of biological S-nitrosothiols.

The Journal of biological chemistry (1998-04-16)
S Aleryani, E Milo, Y Rose, P Kostka
ABSTRACT

Incubation of S-nitrosocysteine or S-nitrosoglutathione (5-100 M) in the presence of a generator of superoxide (xanthine/xanthine oxidase) resulted in a time-dependent decomposition of S-nitrosothiols and accumulation of nitrite/nitrate in reaction mixtures. Quantitatively, the amounts of nitrite/nitrate represented >90% of nitrosonium equivalent of S-nitrosothiols degraded during the incubation. The reaction rates were unaffected by the presence catalase (1 unit/ml). Kinetic analysis showed that the degradation of S-nitrosothiols in the presence of superoxide proceeded at second order rate constants of 76,900 M-1 s-1 (S-nitrosocysteine) and 12,800 M-1 s-1 (S-nitrosoglutathione), respectively, with a stoichiometric ratio of 1 mol of S-nitrosothiol per 2 mol of superoxide. The findings provide the evidence for the involvement of superoxide in the metabolism of S-nitrosothiols. Furthermore, substantially slower reaction rates of superoxide with S-nitrosothiols relative to the reaction rate with NO are consistent with the contention that the transient formation of S-nitrosothiols in biological systems may protect NO from its rapid destruction by superoxide, thus enabling these compounds to serve as carriers or buffers of NO.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium sulfamate, ACS reagent, ≥98.0%