Skip to Content
MilliporeSigma
  • Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis.

Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis.

Proceedings of the National Academy of Sciences of the United States of America (2014-04-16)
Yan Zhang, Haoran Li, Caiguo Zhang, Xiuxiang An, Lili Liu, JoAnne Stubbe, Mingxia Huang
ABSTRACT

Eukaryotic ribonucleotide reductases (RNRs) require a diferric-tyrosyl radical (Fe(III)2-Y•) cofactor to produce deoxynucleotides essential for DNA replication and repair. This metallocofactor is an important target of RNR-based therapeutics, although mechanisms of in vivo cofactor assembly, inactivation, and reactivation are poorly understood. Here, we demonstrate that the conserved Fe-S protein-diflavin reductase complex, Dre2-Tah18, plays a critical role in RNR cofactor biosynthesis. Depletion of Dre2 affects both RNR gene transcription and mRNA turnover through the activation of the DNA-damage checkpoint and the Aft1/Aft2-controlled iron regulon. Under conditions of comparable RNR protein levels, cells with diminishing Dre2 have significantly reduced ability to make deoxynucleotides. Furthermore, the kinetics and levels of in vivo reconstitution of the RNR cofactor are severely impaired in two conditional tah18 mutants. Together, these findings provide insight into RNR cofactor formation and reveal a shared mechanism underlying assembly of the Fe(III)2-Y• cofactor in RNR and the Fe-S clusters in cytosolic and nuclear proteins.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Hydroxypropyl)methyl cellulose
Sigma-Aldrich
Iron, puriss. p.a., carbonyl-Iron powder, low in magnesium and manganese compounds, ≥99.5% (RT)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~10,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~90,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~120,000
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, average Mn ~86,000
Iron, IRMM®, certified reference material, 0.5 mm wire
Sigma-Aldrich
Iron, foil, thickness 0.1 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Iron, powder, −325 mesh, 97%
Sigma-Aldrich
Iron, chips, 99.98% trace metals basis
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methyl cellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Iron, foil, light tested, 25x25mm, thickness 0.05mm, hard, 99.5%
Iron, foil, 6mm disks, thickness 0.5mm, hard, 99.5%
Iron, foil, 50mm disks, thickness 0.25mm, hard, 99.5%
Iron, foil, light tested, 100x100mm, thickness 0.025mm, as rolled, 99.99+%
Iron, foil, 8mm disks, thickness 0.05mm, as rolled, 99.99+%
Iron, foil, 6mm disks, thickness 0.125mm, hard, 99.5%
Iron, foil, not light tested, 100x100mm, thickness 0.005mm, 99.85%
Iron, foil, 50mm disks, thickness 0.38mm, hard, 99.5%
Iron, foil, light tested, 25x25mm, thickness 0.075mm, hard, 99.5%
Iron, foil, 6mm disks, thickness 0.020mm, 99.85%
Iron, foil, light tested, 100x100mm, thickness 0.025mm, hard, 99.5%
Iron, foil, 6mm disks, thickness 0.125mm, as rolled, 99.99+%
Iron, foil, 8mm disks, thickness 0.05mm, hard, 99.5%
Iron, foil, not light tested, 100x100mm, thickness 0.007mm, 99.85%
Iron, foil, 6mm disks, thickness 0.007mm, 99.85%
Iron, foil, 50mm disks, thickness 0.5mm, hard, 99.5%