Skip to Content
MilliporeSigma
  • Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease.

Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease.

Journal of proteome research (2012-06-13)
Xue Shi, Banrida Wahlang, Xiaoli Wei, Xinmin Yin, K Cameron Falkner, Russell A Prough, Seong Ho Kim, Eugene G Mueller, Craig J McClain, Matthew Cave, Xiang Zhang
ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic pollutants and have been associated with abnormal liver enzymes and suspected nonalcoholic fatty liver disease (NAFLD), obesity, and the metabolic syndrome in epidemiological studies. In epidemiological surveys of human PCB exposure, PCB 153 has the highest serum levels among PCB congeners. To determine the hepatic effects of PCB 153 in mice, C57BL/6J mice were fed either a control diet (CD) or a high fat diet (HFD) for 12 weeks, with or without PCB 153 coexposure. The metabolite extracts from mouse livers were analyzed using linear trap quadrupole-Fourier transform ion cyclotron resonance mass spectrometer (LTQ-FTICR MS) via direct infusion nanoelectrospray ionization (DI-nESI) mass spectrometry. The metabolomics analysis indicated no difference in the metabolic profile between mice fed the control diet with PCB 153 exposure (CD+PCB 153) and mice fed the control diet (CD) without PCB 153 exposure. However, compared with CD group, levels of 10 metabolites were increased and 15 metabolites were reduced in mice fed HFD. Moreover, compared to CD+PCB 153 group, the abundances of 6 metabolites were increased and 18 metabolites were decreased in the mice fed high fat diet with PCB 153 exposure (HFD+PCB 153). Compared with HFD group, the abundances of 2 metabolites were increased and of 12 metabolites were reduced in HFD+PCB 153 group. These observations agree with the histological results and indicate that the metabolic effects of PCB 153 were highly dependent on macronutrient interactions with HFD. Antioxidant depletion is likely to be an important consequence of this interaction, as this metabolic disturbance has previously been implicated in obesity and NAFLD.

MATERIALS
Product Number
Brand
Product Description

2,2′,4,4′,5,5′-Hexachlorobiphenyl (IUPAC No. 153), BCR®, certified reference material
Supelco
PCB No 153, analytical standard