Skip to Content
MilliporeSigma
  • Hyperosmotic stress stimulates inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate formation independently of bis-diphosphoinositol tetrakisphosphate modulation.

Hyperosmotic stress stimulates inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate formation independently of bis-diphosphoinositol tetrakisphosphate modulation.

Biochemical and biophysical research communications (2005-09-06)
Xavier Pesesse, Alexandre Leyman, Tomas Luyten, Ludwig Missiaen, Christophe Erneux
ABSTRACT

Hyperosmotic stress induces water diffusion out of the cell, resulting in cell shrinkage, and leading to DNA damage, cell cycle arrest, and cytoskeletal reorganization. A previous report showed that low concentrations of sorbitol (200mM) could increase up to 25-fold the concentration of InsP(8) in animal cells. Here, we investigate the effect of sorbitol (200mM) on the inositol 1,4,5-trisphosphate (InsP(3)) and inositol 1,3,4,5-tetrakisphosphate (InsP(4)) pathway. A 3- to 4-fold increase in InsP(3) and InsP(4) levels after sorbitol challenge was observed. It was prevented by the phospholipase C inhibitor U-73122 but was insensitive to the MAP kinase inhibitor U0126. We also observed an increase in the free intracellular [Ca(2+)] and the occurrence of Ca(2+) oscillations in response to sorbitol. A hyperosmotic stress could therefore affect the levels of both hyperphosphorylated inositol phosphates and InsP(3)/InsP(4)-signalling molecules.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-myo-Inositol 1,3,4,5-tetrakis(phosphate) ammonium salt, ≥95%