- The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses.
The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses.
The deuterium-labeled standards [(2)H(3)]-guaiacol and [(2)H(3)]-4-methylguaiacol were synthesized and utilized in a method employing gas chromatography-mass spectrometry to determine the concentration of guaiacol and 4-methylguaiacol in wine or extracts of oak shavings. The method was combined with previously published methods for 4-ethylphenol, 4-ethylguaiacol, cis- and trans-oak lactone and vanillin, so that all these compounds could be quantified in a single analysis. The method can employ either liquid-liquid extraction or headspace solid-phase microextraction (SPME) and is rapid, robust, precise, and accurate. Under certain conditions, there was artifactual generation, to varying degrees, of guaiacol, 4-methylguaiacol, cis-oak lactone, and vanillin during the analysis of oak extracts, especially when diethyl ether extraction and injector block temperatures at or above 225 degrees C were employed. The most substantial effects were observed for guaiacol, in which results could be exaggerated by over 10 times. These artifacts could be avoided by using headspace SPME or by preparing liquid-liquid extracts with pentane or pentane/diethyl ether (2:1) injected at 200 degrees C providing spot checks using headspace SPME were performed. Data obtained for previously published quantitative determination of guaiacol in oak extracts should be reexamined carefully, with special attention paid to their respective methods of sample preparation and analysis.