Skip to Content
MilliporeSigma
  • Microsomal deacetylation of ring-hydroxylated 2-(acetylamino)fluorene isomers: effect of ring position and molecular mechanics considerations.

Microsomal deacetylation of ring-hydroxylated 2-(acetylamino)fluorene isomers: effect of ring position and molecular mechanics considerations.

Journal of biochemical and molecular toxicology (1999-07-14)
J Castañeda-Acosta, P L Bounds, G W Winston
ABSTRACT

Metabolism of arylamides such as 2-(acetylamino)fluorene to mutagenic products is catalyzed by various liver microsomal and cytosolic enzymes. Deacylation is believed to be a deactivating pathway, and the activity of the microsomal deacetylase toward N-hydroxy-2-AAF is exceedingly greater than toward the parent 2-AAF. Another deactivating pathway is cytochrome P450-catalyzed ring hydroxylation. We have studied the effect of ring hydroxyl substitution on the activity of the liver microsomal deacetylase from Aroclor 1254-treated rats in vitro. The deacetylase activity was generally decreased toward ring-hydroxylated derivatives in the order of 2AAF approximately 1-OH-AAF > 3-OH-AAF > 7-OH-AAF > 5-OH-AAF approximately 9-OH-AAF. The difference in activity between 2-AAF and 5-OH- and 9-OH-AAF was about eightfold. Molecular mechanics calculations reveal that structural and geometrical parameters are more important than the energies associated with the different isomers. We show that the greater the distance of the hydroxyl group on the fluorenyl ring structure from the acetylamino group, the slower the rate of deacetylation. The difference in reactivity between the 1-hydroxy-2-AAF and the other hydroxy-2-AAF isomers is due to the lack of planarity of the 1-hydroxy isomer as compared to the essentially planar configuration of the other isomers. The relative contribution of microsomal ring hydroxylation and deacetylation to detoxification of arylamides remains to be established.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, JIS special grade, ≥99.0%
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, puriss. p.a., reag. Ph. Eur., ≥99% (perchloric acid titration)
Supelco
4-(Dimethylamino)benzaldehyde solution, 10 g/L in isopropanol, for TLC derivatization
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, suitable for histochemical demonstration of nitro blue tetrazolium reduction in neutrophils
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, 98%
Sigma-Aldrich
4-(Dimethylamino)benzaldehyde, ACS reagent, 99%
Millipore
Kovac′s reagent for indoles, suitable for microbiology
Millipore
Kovac′s reagent for indoles, suitable for microbiology