Skip to Content
MilliporeSigma
  • Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment.

Albumin affibody-outfitted injectable gel enabling extended release of urate oxidase-albumin conjugates for hyperuricemia treatment.

Journal of controlled release : official journal of the Controlled Release Society (2020-05-27)
Jinhwan Cho, Seong Han Kim, Byungseop Yang, Jae Min Jung, Inchan Kwon, Doo Sung Lee
ABSTRACT

Therapeutic proteins are attractive candidates for the treatment of human diseases. However, their short half-life often limits their clinical application. To overcome this problem, injectable hydrogels have been developed as depots for controlled release of therapeutic proteins, but these systems have not yet achieved the desired extended, sustained drug release profile. Our strategy herein was to implement selective and strong interactions between the hydrogels and therapeutic proteins. Specifically, we investigated whether strong and specific interactions between human serum albumin (HSA) and albumin-binding peptide (ABP) can be used to achieve extended release of urate oxidase (Uox), a therapeutic protein for hyperuricemia treatment, from pH- and temperature-sensitive injectable hydrogels consisting of poly(ethylene glycol)-poly(β-amino ester urethane) (PEG-PAEU) copolymer. Thus, HSA was conjugated to Uox (Uox-HSA) and ABP was introduced in PEG-PAEU (PEG-PAEU-ABP). Polymers, conjugates, and hydrogels were extensively characterized for their physicochemical characteristics and in vivo efficacy in a hyperuricemia mouse model. Briefly, the hydrogels exhibited good injectability, in vitro biocompatibility and extended drug release, and in vivo gel formation and degradability. The serum half-life of the Uox-HSA loaded in PEG-PAEU-ABP hydrogels was ~96 h in mice, which was ~88, ~5.5, and ~2 times longer than that of free native Uox, free Uox-HSA, and Uox-HSA loaded in PEG-PAEU hydrogels, respectively. In the hyperuricemia mouse model, Uox-HSA loaded in PEG-PAEU-ABP hydrogels exhibited a substantially extended period of uric acid-lowering efficacy. These results clearly show that by applying ABP-HSA strong interaction to injectable hydrogels and therapeutic protein, the concentration of the therapeutic protein can be maintained for a long period in vivo, prolonging its therapeutic effect. Further, our approach can be tailored to accommodate other therapeutic proteins, which potentially expands the clinical applicability range of these systems.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
N-Hydroxymaleimide, 97%
Sigma-Aldrich
4-Hydroxybutyl acrylate, 90%, contains 50 ppm monomethyl ether hydroquinone as inhibitor, 300 ppm hydroquinone as inhibitor
Sigma-Aldrich
3-Azido-1-propanamine, ≥95%