Skip to Content
MilliporeSigma
  • TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways.

TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways.

Cell death & disease (2018-02-17)
Chao Liang, Shangqian Wang, Chao Qin, Meilin Bao, Gong Cheng, Bianjiang Liu, Pengfei Shao, Qiang Lv, Ninghong Song, Lixin Hua, Min Gu, Jie Li, Zengjun Wang
ABSTRACT

Hormone therapy drugs, such as bicalutamide and enzalutamide, directed against prostate cancer focus on androgen receptor (AR) signaling and are initially effective, but the disease progresses to lethality as resistance to these drugs develops. A method to prolong the drug response time and improve the drug efficacy is still unavailable. TRIM36 was reported as a novel androgen signaling target gene and is upregulated in prostate cancer. In this study, we found that 63.4% (64/95) of PCa in TMA expressed the TRIM36 protein. Interestingly, patients with negative TRIM36 expression had a shorter biochemical recurrence-free survival. TRIM36 expression was significantly associated with the Gleason score (P = 0.005), delayed prostate cancer cell cycle progression and inhibited cell proliferation in vitro and in vivo, and these effects were mediated via inhibition of the MAPK/ERK phosphorylation pathway. Remarkably, we found that rescuing the expression of TRIM36 during anti-androgen therapy could improve the drug efficacy. Collectively, TRIM36 is a novel androgen-responsive gene, and it dramatically enhanced the efficacy of anti-androgen drugs against prostate cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-TRIM36 antibody produced in rabbit, affinity isolated antibody