Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

A1765

Sigma-Aldrich

S-Acetyl-coenzyme A synthetase from baker′s yeast (S. cerevisiae)

lyophilized powder, ≥3 units/mg protein

Synonym(s):

Acetate CoA ligase (AMP forming), Acetate thiokinase

Sign Into View Organizational & Contract Pricing

Select a Size

5 MG
$298.00

$298.00


Available to ship onApril 08, 2025Details



Select a Size

Change View
5 MG
$298.00

About This Item

CAS Number:
EC Number:
EC Number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.26

$298.00


Available to ship onApril 08, 2025Details


form

lyophilized powder

Quality Level

specific activity

≥3 units/mg protein

composition

Protein, 10-30% biuret

storage temp.

−20°C

Looking for similar products? Visit Product Comparison Guide

Application

S-Acetyl-coenzyme A synthetase from baker′s yeast (S. cerevisiae) has been used in the synthesis of adenosine 5′-tetraphosphate and adenosine 5′-pentaphosphate.[1]
S-Acetyl-coenzyme A synthetase may be used to study various metabolic pathways, such as glycolysis, gluconeogenesis, pyruvate metabolism and CO2 fixation. It may also be used in gene expression studies.

Biochem/physiol Actions

Acetyl-coenzyme A synthetase catalyzes the production of acetyl-CoA. It is involved in histone acetylation in the nucleus. It may be involved in the growth of nonfermentable carbon sources such as glycerol. Acetyl-coenzyme A synthetase is induced by acetate, acetaldehyde and ethanol [2].

Packaging

Package size based on protein content.

Unit Definition

One unit will form 1.0 μmole of S-acetyl coenzyme A from acetate, ATP, and coenzyme A per min at pH 7.5 at 37 °C.

Physical form

Lyophilized powder containing stabilizers as potassium phosphate, sucrose, and reduced glutathione

pictograms

Health hazard

signalword

Danger

hcodes

Hazard Classifications

Resp. Sens. 1

Storage Class

11 - Combustible Solids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Heidi A Crosby et al.
The Journal of biological chemistry, 287(19), 15590-15601 (2012-03-15)
N-lysine acetylation is a posttranslational modification that has been well studied in eukaryotes and is likely widespread in prokaryotes as well. The central metabolic enzyme acetyl-CoA synthetase is regulated in both bacteria and eukaryotes by acetylation of a conserved lysine
Sandy Thao et al.
mBio, 2(5), doi:10-doi:10 (2011-10-20)
In the bacterium Salmonella enterica, the CobB sirtuin protein deacetylase and the Gcn5-related N(ε)-acetyltransferase (GNAT) Pat control carbon utilization and metabolic flux via N(ε)-lysine acetylation/deacetylation of metabolic enzymes. To date, the S. enterica Pat (SePat) acetyltransferase has not been biochemically
Hua Xu et al.
Biochemistry, 50(26), 5883-5892 (2011-06-02)
Recent proteomics studies have revealed that protein acetylation is an abundant and evolutionarily conserved post-translational modification from prokaryotes to eukaryotes. Although an astonishing number of acetylated proteins have been identified in those studies, the acetyltransferases that target these proteins remain
Guillaume Baptist et al.
Nucleic acids research, 41(17), e164-e164 (2013-07-31)
We have developed a new screening methodology for identifying all genes that control the expression of a target gene through genetic or metabolic interactions. The screen combines mutant libraries with luciferase reporter constructs, whose expression can be monitored in vivo
Saurabh Sahar et al.
The Journal of biological chemistry, 289(9), 6091-6097 (2014-01-16)
The circadian clock regulates a wide range of physiological and metabolic processes, and its disruption leads to metabolic disorders such as diabetes and obesity. Accumulating evidence reveals that the circadian clock regulates levels of metabolites that, in turn, may regulate

Articles

Enzyme Reagent Coenzyme A (CoA, CoASH or HSCoA) is the key cofactor in first step of the TCA cycle, responsible for transferring the acetyl group from pyruvate oxidation to oxaloacetate yielding citrate. Available through Sigma-Aldrich online.

Questions

Reviews

No rating value

Active Filters

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service