Skip to Content
MilliporeSigma
All Photos(4)

Key Documents

699624

Sigma-Aldrich

Carbon, mesoporous

nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined

Synonym(s):

Graphite nanoparticles, Graphitized carbon, Graphitized carbon black

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C
CAS Number:
Molecular Weight:
12.01
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

form

nanopowder

surface area

50-100 m2/g

pore size

0.25 cm3/g pore volume (typical)
137 Å average pore diameter (typical)

bp

4827 °C

mp

3654-3697 °C

density

1.828 g/cm3 (absolute, typical)

bulk density

0.075 g/cm3

SMILES string

[C]

InChI

1S/C

InChI key

OKTJSMMVPCPJKN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Surface area of the graphitized mesoporous carbon was determined to be 77 m2/g. These are highly pure graphitized, porous carbon nanoparticles. Particles have large mesopores and some microporosity. Graphite lattice structure content of approximately 10%. An agglomeration of 30 nm mesoporous nanoparticles (TEM).

Application

The cytotoxic effects of graphitized carbon mesoporous nanopowder and multiwalled carbon nanotubes (MWNTs) was compared on human airway epithelium. Mesoporous carbon was found to have no effect on the epithelium cell morphology.

Storage Class

11 - Combustible Solids

wgk_germany

nwg

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Multiwalled carbon nanotubes induce altered
morphology and loss of barrier function in human
bronchial epithelium at noncytotoxic doses
Snyder RJ, et al.
Nanomedicine (London, England), 9, 4093-4105 (2014)
Tegan N Lavoie et al.
Environmental science & technology, 49(13), 7904-7913 (2015-07-08)
We report measurements of methane (CH4) emission rates observed at eight different high-emitting point sources in the Barnett Shale, Texas, using aircraft-based methods performed as part of the Barnett Coordinated Campaign. We quantified CH4 emission rates from four gas processing
Catharina Vendl et al.
The Journal of experimental biology, 218(Pt 21), 3425-3434 (2015-11-06)
Fundamental differences in methane (CH4) production between macropods (kangaroos) and ruminants have been suggested and linked to differences in the composition of the forestomach microbiome. Using six western grey kangaroos (Macropus fuliginosus) and four red kangaroos (Macropus rufus), we measured
Garvin A Heath et al.
Proceedings of the National Academy of Sciences of the United States of America, 111(31), E3167-E3176 (2014-07-23)
Recent technological advances in the recovery of unconventional natural gas, particularly shale gas, have served to dramatically increase domestic production and reserve estimates for the United States and internationally. This trend has led to lowered prices and increased scrutiny on
Antoine P Pagé et al.
PloS one, 10(7), e0132062-e0132062 (2015-07-15)
The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate

Articles

Mesoporous Materials include a range of high surface area porous silicates with applications in gas adsorption, drug delivery, diagnostics and catalysis.

Mesoporous materials self-assemble from sol-gel precursors and amphiphiles, forming versatile structures for various applications.

Recent demand for electric and hybrid vehicles, coupled with a reduction in prices, has caused lithium-ion batteries (LIBs) to become an increasingly popular form of rechargeable battery technology.

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service