Skip to Content
Merck
All Photos(4)

Documents

373001

Sigma-Aldrich

Poly(ethylene glycol)

average Mn 4,600, hydroxyl

Synonym(s):

Polyethylene glycol, PEG

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
H(OCH2CH2)nOH
CAS Number:
MDL number:
UNSPSC Code:
12352104
PubChem Substance ID:
NACRES:
NA.23

product name

Poly(ethylene glycol), average Mn 4,600

form

flakes

mol wt

average Mn 4,400-4,800
average Mn 4,600

viscosity

180 cSt(210 °F)

mp

57-61 °C (lit.)

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

C(CO)O

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Poly(ethylene glycol) (PEG) is a biocompatible water soluble poly(ether) with low toxicity. It is majorly used as a biopolymer for the surface modification of biomaterials. Its properties include hydrophilicity and non-immunogenicity.

Application

PEG can be used in the formation of polymeric hydrogels for the formation of biomedical applications.

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Morphology of Photopolymerized End-linked Poly(ethylene glycol) Hydrogels by Small Angle X-ray Scattering
Waters DJ, et al.
Macromolecules, 43(16), 6861-6861 (2010)
Bacterial adhesion is affected by the thickness and stiffness of poly (ethylene glycol) hydrogels
Kolewe KW, et al.
ACS Applied Materials & Interfaces, 10(3), 2275-2281 (2018)
Biomedical hydrogels
Burdick JA, et al.
Biomaterials, Artificial Organs and Tissue Engineering, 33(5), 107-115 (2005)
I L Konorova et al.
Patologicheskaia fiziologiia i eksperimental'naia terapiia, (4)(4), 7-9 (1991-07-01)
The search for antiaggregatory compounds is undertaken, as a rule, under in vitro conditions which do not reflect the dynamics of the real process. The present work deals with study of the peculiarities of the development of the collagen induced
Idalis Villanueva et al.
Acta biomaterialia, 5(8), 2832-2846 (2009-06-11)
The pericellular matrix (PCM) surrounding chondrocytes is thought to play an important role in transmitting biochemical and biomechanical signals to the cells, which regulates many cellular functions including tissue homeostasis. To better understand chondrocytes interactions with their PCM, three-dimensional poly(ethylene

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service