Skip to Content
Merck
All Photos(1)

Key Documents

163201

Sigma-Aldrich

N,N′-Dicyclohexyl-4-morpholinecarboxamidine

98%

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C17H31N3O
CAS Number:
Molecular Weight:
293.45
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Quality Level

Assay

98%

mp

105-107 °C (lit.)

functional group

amine
ether

SMILES string

C1CCC(CC1)N\C(=N\C2CCCCC2)N3CCOCC3

InChI

1S/C17H31N3O/c1-3-7-15(8-4-1)18-17(20-11-13-21-14-12-20)19-16-9-5-2-6-10-16/h15-16H,1-14H2,(H,18,19)

InChI key

OZNYZQOTXQSUJM-UHFFFAOYSA-N

General description

N,N′-Dicyclohexyl-4-morpholinecarboxamidine is kidney-selective ATP-sensitive potassium blocker. It is an an orally effective nonkaliuretic diuretic in rats.

Application

N,N′-Dicyclohexyl-4-morpholinecarboxamidine was used as reagent in the synthesis of alkoxyalkyl analogs of nucleotide phosphonates, cidofovir and cyclic cidofovir.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Earl R Kern et al.
Antimicrobial agents and chemotherapy, 46(4), 991-995 (2002-03-19)
The nucleotide phosphonates cidofovir (CDV) and cyclic cidofovir (cCDV) are potent antiviral compounds when administered parenterally but are not well absorbed orally. These compounds have been reported to have activity against orthopoxvirus replication in vitro and in animal models when
Yuji Kamata et al.
Hypertension research : official journal of the Japanese Society of Hypertension, 32(3), 220-226 (2009-03-06)
It is suggested that an ATP-sensitive potassium channel blocker suppresses sodium-induced hypertension through increased secretion of urinary kallikrein. We reported that glibenclamide, an ATP-sensitive potassium channel blocker, accelerated dose-dependent secretion of renal kallikrein in sliced kidney cortex and in vivo
S C Perricone et al.
Journal of medicinal chemistry, 37(22), 3693-3700 (1994-10-28)
Random screening identified N,N'-dicyclohexyl-4-morpholinecarboxamidine (U-18177, 1) as an orally effective nonkaliuretic diuretic in rats. The diuretic profile of 1 and its 1-adamantyl analog (U-37883A, 4) was confirmed orally in dogs, when they were less potent than standard diuretics but showed

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service