Przejdź do zawartości
Merck

Processing of progranulin into granulins involves multiple lysosomal proteases and is affected in frontotemporal lobar degeneration.

Molecular neurodegeneration (2021-08-05)
Swetha Mohan, Paul J Sampognaro, Andrea R Argouarch, Jason C Maynard, Mackenzie Welch, Anand Patwardhan, Emma C Courtney, Jiasheng Zhang, Amanda Mason, Kathy H Li, Eric J Huang, William W Seeley, Bruce L Miller, Alma Burlingame, Mathew P Jacobson, Aimee W Kao
ABSTRAKT

Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases to process PGRN at a range of pH setpoints. In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in distinctive, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn showed increased PGRN processing to granulin F and increased AEP activity in degenerating brain regions but not in regions unaffected by disease. This study demonstrates that multiple lysosomal proteases may work in concert to liberate multi-granulin fragments and granulins. It also implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage and granulin production may represent therapeutic strategies for FTLD-Pgrn and other progranulin-related diseases.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Cathepsin L Inhibitor III, The Cathepsin L Inhibitor III controls the biological activity of Cathepsin L. This small molecule/inhibitor is primarily used for Protease Inhibitors applications.
Sigma-Aldrich
Anti-GRN antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, clone M2, purified immunoglobulin (Purified IgG1 subclass), buffered aqueous solution (10 mM sodium phosphate, 150 mM NaCl, pH 7.4, containing 0.02% sodium azide)
Sigma-Aldrich
Retinoic acid, ≥98% (HPLC), powder
Sigma-Aldrich
Anti-Actin Antibody, clone C4, clone C4, Chemicon®, from mouse
Sigma-Aldrich
Cathepsin K, His•Tag®, Human, Recombinant, E. coli, Cathepsin K, His•Tag, Human, Recombinant, E. coli, CAS 94716-09-3, of the papain superfamily of cysteine proteinases plays a role in osteoclast-mediated bone resorption and collagen degradation.
Sigma-Aldrich
Triton X-100, BioXtra