Skip to Content
Merck
All Photos(1)

Documents

P11255

Sigma-Aldrich

PTCDA

97%

Synonym(s):

Perylene-3,4,9,10-tetracarboxylic dianhydride, Pigment Red 224

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C24H8O6
CAS Number:
Molecular Weight:
392.32
Beilstein:
57831
EC Number:
MDL number:
UNSPSC Code:
12352103
PubChem Substance ID:
NACRES:
NA.23

description

Band gap: 2.1 eV

Assay

97%

form

powder

mp

>300 °C

Orbital energy

HOMO -6.8 eV 
LUMO -4.7 eV 

OPV Device Performance

ITO/CuPc/PTCDA/In

  • Short-circuit current density (Jsc): 2 mA/cm2
  • Open-circuit voltage (Voc): 0.55 V
  • Fill Factor (FF): 0.35
  • Power Conversion Efficiency (PCE): 1.8 %

semiconductor properties

N-type (mobility=10−4 cm2/V·s)

InChI

1S/C24H8O6/c25-21-13-5-1-9-10-2-6-15-20-16(24(28)30-23(15)27)8-4-12(18(10)20)11-3-7-14(22(26)29-21)19(13)17(9)11/h1-8H

InChI key

CLYVDMAATCIVBF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) is a perylene derivative which forms highly crystalline films and dyes that can be used for a majority of electronic and opto-electronic applications. It provides a high electron mobility due to its low intermolecular distance which results in π-π conjugation.

Application

Polycondensation of PTCDA with polypropylene glycol (PPG) based diamine can be utilized for the development of perlyene diimides which have a potential use as n-type semiconductors in organic photovoltaics. PTCDA can be used as a light absorbing monomer for the fabrication of bichromophobic light harvesting antenna systems. It can also be used to prepare 3, 4, 9, 10-perylene tetracarboxylic acid-aromatic fluorophores dye for a highly reversible fluorescence switching on different substrates.

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Sylvie Rangan et al.
The journal of physical chemistry. B, 122(2), 534-542 (2017-06-21)
The adsorption geometry and energy alignment at the PTCDA/TiO
Zhixuan Wei et al.
Nature communications, 10(1), 3227-3227 (2019-07-22)
The interactions between charge carriers and electrode structures represent one of the most important considerations in the search for new energy storage devices. Currently, ionic bonding dominates the battery chemistry. Here we report the reversible insertion of a large molecular
Pavel Kocán et al.
Physical chemistry chemical physics : PCCP, 21(18), 9504-9511 (2019-04-25)
Realization of future hybrid electronic devices combining organic and inorganic semiconductors requires a well-defined interface between both components. Such an interface can be formed generally by self-ordering of organic molecules on inorganic substrates, which is usually hindered by strong covalent
Fanfan Du et al.
Cellular and molecular bioengineering, 10(5), 357-370 (2017-10-11)
Intracellular delivery is a key step for many applications in medicine and for investigations into cellular function. This is particularly true for immunotherapy, which often requires controlled delivery of antigen and adjuvants to the cytoplasm of immune cells. Due to
A halochromic stimuli-responsive reversible fluorescence switching 3, 4, 9, 10-perylene tetracarboxylic acid dye for fabricating rewritable platform.
Hariharan PS, et al.
Optical Materials, 64(11-12), 53-57 (2017)

Articles

Fabrication procedure of organic field effect transistor device using a soluble pentacene precursor.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service