Skip to Content
Merck
All Photos(2)

Documents

430471

Sigma-Aldrich

Poly(D,L-lactide-co-glycolide)

ester terminated, Mw 50,000-75,000

Synonym(s):

Lactel® B6006-1, PLGA

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[C3H4O2]x[C2H2O2]y
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

form

amorphous

feed ratio

lactide:glycolide 85:15

mol wt

Mw 50,000-75,000

degradation timeframe

<6 months

viscosity

0.55-0.75 dL/g, 0.1 % (w/v) in chloroform(25 °C)

transition temp

Tg 45-50 °C

solubility

ethyl acetate, chloroform, acetone and THF: soluble

storage temp.

2-8°C

SMILES string

OCC(O)=O.CC(O)C(O)=O

Looking for similar products? Visit Product Comparison Guide

General description

Characteristic properties of ester terminated poly(D,L-lactide-co-glycolide) (PLGA) are in vivo biodegradability, tunable drug release profile and very high encapsulation capacity.

Application

PLGA polymers find uses in the production of biodegradable medical sutures and for controlled drug release. PLGA microspheres have been reported for use in controlled release of human growth hormone. Thin membranes of blended polymers constituting of PLGA/polycaprolactone/β-tricalcium phosphate have been used in guided bone regeneration.

Features and Benefits

Controlled release of bioactive agents, sutures and bioabsorbable implantable devices.

Physical form

Biocompatible, biodegradable polymer.

Legal Information

Lactel is a registered trademark of Evonik Corp

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Preparation and characterization of poly (D, L-lactide-co-glycolide) microspheres for controlled release of human growth hormone
Capan Y, et al.
Aaps Pharmscitech, 4(2), 147-156 (2003)
Fabrication of blended polycaprolactone/poly (lactic-co-glycolic acid)/?-tricalcium phosphate thin membrane using solid freeform fabrication technology for guided bone regeneration
Shim JH, et al.
Tissue Engineering: Part A, 19(3-4), 317-328 null
Manjae Gil et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 5(6), 1800024-1800024 (2018-06-26)
Anisotropically compartmentalized microparticles have attracted increasing interest in areas ranging from sensing, drug delivery, and catalysis to microactuators. Herein, a facile method is reported for the preparation of helically decorated microbuilding blocks, using a modified electrohydrodynamic cojetting method. Bicompartmental microfibers
Ayelen L Helling et al.
Tissue engineering. Part A, 25(3-4), 214-223 (2018-10-04)
In human skin the junction between the epidermis and dermis undulates. Epidermal stem cells pattern according to their position relative to those undulations. Here we describe a rig in which epidermal cells are cultured on a collagen-coated poly(d,l-lactide-co-glycolide) (PLGA) membrane.
Rongcai Liang et al.
International journal of pharmaceutics, 454(1), 344-353 (2013-07-23)
Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative

Articles

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

Synthetic aliphatic polyesters dominate resorbable biomaterials in clinical use.

AliAliphatic polyesters, including polylactide and polyglycolide, are biodegradable polymers widely used in medical applications.

Immunosuppressive tumor-associated myeloid cells (TAMC) are responsible for glioblastoma (GBM) resistance to immunotherapies and existing standard of care treatments. This mini-review highlights recent progress in implementing nanotechnology in advancing TAMC-targeted therapies for GBM.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service