Skip to Content
Merck
All Photos(1)

Key Documents

SML1179

Sigma-Aldrich

WWL113

≥98% (HPLC)

Synonym(s):

4′-[[[Methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1′-Biphenyl]-4-carboxylic acid ethyl ester, Ethyl 4′-((methyl(3-(pyridin-4-yl)benzyl)carbamoyl)oxy)-[1,1′-biphenyl]-4-carboxylate

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C29H26N2O4
CAS Number:
Molecular Weight:
466.53
UNSPSC Code:
12161501
PubChem Substance ID:
NACRES:
NA.77

Quality Level

Assay

≥98% (HPLC)

form

powder

color

white to beige

solubility

DMSO: 10 mg/mL, clear

storage temp.

2-8°C

SMILES string

CCOC(C(C=C1)=CC=C1C(C=C2)=CC=C2OC(N(C)CC3=CC(C4=CC=NC=C4)=CC=C3)=O)=O

InChI

1S/C29H26N2O4/c1-3-34-28(32)25-9-7-22(8-10-25)23-11-13-27(14-12-23)35-29(33)31(2)20-21-5-4-6-26(19-21)24-15-17-30-18-16-24/h4-19H,3,20H2,1-2H3

InChI key

AKIIPHDGVCFVCC-UHFFFAOYSA-N

Biochem/physiol Actions

WWL113 is an inhibitor of mouse Carboxylesterase 3 (Ces3) and human CES1 (orthologue of mCes3), serine hydrolases involved in lipolysis in addition to their activities as liver detoxification enzymes. In a recent study, hCES1 activity was found to be increased two-fold in obese individuals and patients with type 2 diabetes compared to lean subjects, and is thought to generate surplus fatty acids that can deposit ectopically in tissues. WWL113 treatment resulted in major improvement of multiple features of metabolic syndrome and ameliorated obesity-diabetes in mice with lowered levels of nonesterified free fatty acids (NEFAs), triglycerides (TGs), total cholesterol and fasted glucose as well as enhanced glucose tolerance after three weeks of treatment. WWL113 inhibits Ces3 with an IC50 of 120 nM and also the closely related Ces1f with an IC50 of 100 nM. WWL113 inhibits mouse recombinant Ces1, Ces1c, and Abhd6 at 10 μM.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Roxana Filip et al.
Cell chemical biology, 28(2), 202-212 (2021-01-16)
MicroRNAs (miRNAs) act as cellular signal transducers through repression of protein translation. Elucidating targets using bioinformatics and traditional quantitation methods is often insufficient to uncover global miRNA function. Herein, alteration of protein function caused by miRNA-185 (miR-185), an immunometabolic miRNA

Related Content

The Cravatt group develops innovative technologies to understand enzyme roles in disease, focusing on activity-based protein profiling.

The Cravatt group develops innovative technologies to understand enzyme roles in disease, focusing on activity-based protein profiling.

The Cravatt group develops innovative technologies to understand enzyme roles in disease, focusing on activity-based protein profiling.

The Cravatt group develops innovative technologies to understand enzyme roles in disease, focusing on activity-based protein profiling.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service