Skip to Content
Merck
All Photos(1)

Key Documents

901233

Sigma-Aldrich

(2R)-2-Phenyl-3,4-dihydro-2H-pyrimido[2,1-b][1,3]benzothiazole

≥95%

Synonym(s):

(R)-2-Phenyl-3,4-dihydro-2H-benzo[4,5]thiazolo[3,2-a]pyrimidine, (R)-Homobenzotetramisole, Birman (R)-HBTM

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C16H14N2S
CAS Number:
Molecular Weight:
266.36
MDL number:
UNSPSC Code:
12161600
NACRES:
NA.22

Quality Level

Assay

≥95%

form

powder or chunks

mp

145-147 °C

functional group

phenyl
thioether

storage temp.

2-8°C

SMILES string

C12=CC=CC=C1SC3=N[C@@H](C4=CC=CC=C4)CCN23

InChI

1S/C16H14N2S/c1-2-6-12(7-3-1)13-10-11-18-14-8-4-5-9-15(14)19-16(18)17-13/h1-9,13H,10-11H2/t13-/m1/s1

InChI key

ZMYZJAQMQBHNLH-CYBMUJFWSA-N

Looking for similar products? Visit Product Comparison Guide

Application

This chiral isothiourea homobenzotetramisole ((R)-HBTM) developed by the Birman lab is an organocatalyst that has been used for kinetic resolution, determination of absolute configuration, and nucleophile-catalysed, Michael–aldol-b-lactonization (NCMAL). This same product was previously listed as L511730, and the complementary (S)-HBTM organocatalyst (900542) is also available.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nicholas A Ahlemeyer et al.
Organic letters, 18(14), 3454-3457 (2016-07-08)
A novel, reagent-free catalytic transformation of α,β-unsaturated thioesters into 2-substituted thiochromenes has been developed, with carbon dioxide as the only byproduct. Amidine-based catalysts, particularly homobenzotetramisole and its analogues, achieve high enantioselectivities and yields in this process.
Alexander J Wagner et al.
The Journal of organic chemistry, 78(9), 4594-4598 (2013-04-19)
A new implementation of the competing enantioselective conversion (CEC) method was developed to qualitatively determine the absolute configuration of enantioenriched secondary alcohols using thin-layer chromatography. The entire process for the method requires approximately 60 min and utilizes micromole quantities of
Alexander S Burns et al.
Organic letters, 19(11), 2953-2956 (2017-05-17)
A method for determining the absolute configuration of β-chiral primary alcohols has been developed. Enantioenriched alcohols were acylated in the presence of either enantiomer of the enantioselective acylation catalyst HBTM, and the faster reaction was determined by measuring product conversion
Alexander J Wagner et al.
Organic letters, 13(16), 4470-4473 (2011-07-23)
A new method was developed to assign the absolute configuration of molecules using kinetic resolution catalysts. Secondary alcohols were acylated in the presence of Birman's S-HBTM and R-HBTM catalysts, and the fast-reacting catalyst was identified by NMR analysis of the
Beatrice Ranieri et al.
The Journal of organic chemistry, 78(12), 6291-6296 (2013-05-22)
A concise approach to the synthesis of homobenzotetramisole and derivatives is described. Our strategy features a one-pot acylation-cyclization of 2-aminobenzothiazole with α,β-unsaturated acid chlorides to afford annulated pyrimidones. Subsequent Grignard addition followed by acid-promoted dehydration and reduction provides good overall

Articles

We are proud to offer the isothiourea organocatalyst homobenzotetramisole (HBTM) as part of our asymmetric catalysis portfolio in both (R) and (S) enantiomeric forms.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service