A comprehensive study on the effects of different carbon sources during the bacterial enrichment on the removal performances of benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds when present as a mixture was conducted. Batch BTEX removal kinetic experiments were performed
Journal of chromatography. A, 1260, 81-87 (2012-09-12)
Endcapped stationary phases were prepared after thermal immobilization of poly(methyloctadecylsiloxane) (PMODS) onto zirconized and titanized silica supports. These new stationary phases have lower densities of residual hydroxyl groups, according to infrared spectroscopy and 29Si CP-MAS NMR and as shown by
A new strain Mycobacterium cosmeticum byf-4 able to simultaneously degrade benzene, toluene, ethylbenzene, and o-xylene (BTE(o-)X) compounds has been isolated and identified previously in our laboratory. We further report here the extent of degradation of every BTE(o-)X component, and unravel
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated
Journal of contaminant hydrology, 136-137, 131-144 (2012-07-13)
Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.