PRL-3 Inhibitor I has been used as an inhibitor of phosphatase of regenerating liver-3 (PRL-3):
to test its effect on classical Hodgkin lymphoma cell survival[1]
in the human umbilical vein endothelial cells tube formation assay[2]
to test its effect on the migration of neural crest cells[3]
Biochem/physiol Actions
PRL-3 Inhibitor I is a rhodanine derivative with an IC50 value of 0.9 μM against phosphatase of regenerating liver-3 (PRL-3), a nonclassical protein tyrosine phosphatase that has recently been shown to be involved in cancer metastasis. PRL-3 Inhibitor I reduced the invasiveness of B16F10 melanoma cells in a cell based assay.
Phosphatase of regenerating liver 3 (PRL-3) is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s) underlying its enhanced expression and its function
Phosphatase of regenerating liver-3 (PRL-3) is implicated in oncogenesis of hematological and solid cancers. PRL-3 expression increases metastatic potential, invasiveness and is associated with poor prognosis. With this study, we aimed to show a possible oncogenic role of PRL-3 in
The human iPS cell line, hiPS-SPG76 (FJMUi001-A), derived from skin fibroblasts from a 42-year-old male hereditary spastic paraplegia patient carrying compound heterozygous p.P498L (c.1493C > T) and p.R618W (c.1852C > T) mutations in the CAPN1 gene, was generated by non-integrative reprogramming vectors encoding OCT3/4
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of thymocytes and is largely driven by the NOTCH/MYC pathway. Yet, additional oncogenic drivers are required for transformation. Here, we identify protein tyrosine phosphatase type 4 A3 (PRL3) as a collaborating
A series of rhodanine derivatives was synthesized and evaluated for their ability to inhibit PRL-3. Benzylidene rhodanine derivative showed good biological activity, while compound 5e was the most active in this series exhibiting an IC50 value of 0.9 microM in
Protein tyrosine phosphatases' catalytic mechanism involves transient phosphorylation.
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.