The elimination of toxic metal ions metabolically accumulated by patients remains a difficult clinical problem and a target of drug development. DTPA (diethylenetriaminepentaacetic acid) is a hydrophilic chelating agent with high affinity for divalent and trivalent metal ions including iron
Metal ion separations are critical to numerous fields, including nuclear medicine, waste recycling, space exploration, and fundamental research. Nonetheless, operational conditions and performance are limited, imposing compromises between recovery, purity, and cost. Siderophore-inspired ligands show unprecedented charge-based selectivity and compatibility
Biological trace element research, 99(1-3), 219-231 (2004-07-06)
Zinc is thought to be required as a structural component of the thyroid hormone (triiodothyronine, T3) receptor (TR). However, we have previously demonstrated that use of diethylenetriaminepentaacetic acid (DTPA) to restrict zinc availability to cultured cells actually potentiates rather than
Water pollution by heavy metals is one of the most serious worldwide environmental issues. With a focus on copper(II) ions and copper complex removal, in the present study, ultra-small primary CoFe2O4 magnetic nanoparticles (MNPs) coated with octadecylamine (ODA) of adequate
Chitosan modified with gadolinium diethylenetriaminepentaacetic acid for magnetic resonance imaging of DNA/chitosan nanoparticles.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.