Skip to Content
Merck
All Photos(1)

Key Documents

900527

Sigma-Aldrich

Doped graphene

nitrogen-doped, avg. no. of layers, 1 ‑ 5

Synonym(s):

N-Doped graphene, NDG, NG

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
12141908
NACRES:
NA.23

Product Name

Nitrogen-doped graphene, avg. no. of layers, 1 ‑ 5

Assay

≥95%

Quality Level

form

powder

feature

avg. no. of layers 1 ‑ 5

composition

Carbon, 85-95%
Nitrogen, 2.0-4.0%
Oxygen, <7.5%

surface area

>500 m2/g , BET

Looking for similar products? Visit Product Comparison Guide

General description

  • Typical thickness: 1-5 layers.
  • Typical size : 0.5-5 μm.

Application

  • Electro catalyst.
  • Field-effect transistors.
  • Sensors.
  • Lithium ion batteries.
  • Supercapacitors.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications.
Wang, et al.
ACS Catalysis, 2(5), 781-794 (2012)
Liangti Qu et al.
ACS nano, 4(3), 1321-1326 (2010-02-17)
Nitrogen-doped graphene (N-graphene) was synthesized by chemical vapor deposition of methane in the presence of ammonia. The resultant N-graphene was demonstrated to act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover
Andrea Zitolo et al.
Nature materials, 14(9), 937-942 (2015-08-11)
While platinum has hitherto been the element of choice for catalysing oxygen electroreduction in acidic polymer fuel cells, tremendous progress has been reported for pyrolysed Fe-N-C materials. However, the structure of their active sites has remained elusive, delaying further advance.
Mohi Uddin Jewel et al.
Molecules (Basel, Switzerland), 25(5) (2020-03-04)
Fully inkjet-printed device fabrication is a crucial goal to enable large-area printed electronics. The limited number of two-dimensional (2D) material inks, the bottom-gated structures, and the low current on/off ratio of thin-film transistors (TFTs) has impeded the practical applications of

Articles

Advances in scalable synthesis and processing of two-dimensional materials

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service