Skip to Content
Merck
  • Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.

Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.

Chemosphere (2015-02-04)
M T Ammami, F Portet-Koltalo, A Benamar, C Duclairoir-Poc, H Wang, F Le Derf
ABSTRACT

Dredged harbor sediment co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) was subjected to enhanced electrokinetic treatments, using a mixture of a chelating agent (citric acid CA) and a surfactant as additives in the processing fluids. We tested various operating conditions (at 1 V cm(-1)): different CA concentrations, applying a periodic voltage gradient, pre-conditioning the sediment with the additives, and replacing the synthetic surfactant Tween 20 (TW20) by biosurfactants. Increasing the CA concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of CA and TW20 provided the best results for Zn, Cd and Pb removal and also for removal of the 16 priority PAHs. Promising results were obtained with solutions containing rhamnolipids (0.028%) and a viscosin-like biosurfactant produced by Pseudomonas fluorescens Pfa7B (0.025%), associated to a periodic voltage gradient. Although the rhamnolipid and the viscosin-like compounds involved a higher electrical current than TW20, metals were less removed from the sediment. The electroosmotic flow was lower when we used biosurfactants, hence a less effective effect on PAH removal.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Copper(II) sulfate, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Copper(II) sulfate, ReagentPlus®, ≥99%
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Copper(II) sulfate, puriss., meets analytical specification of Ph. Eur., BP, USP, anhydrous, 99-100.5% (based on anhydrous substance)
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Hydrogen chloride solution, 4.0 M in dioxane
Sigma-Aldrich
Citric acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenanthrene, 98%
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Citric acid, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Citric acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Citric acid, anhydrous, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Citric acid, 99%