Saltar al contenido

We are planning system maintenance on January 25, 2025, from 1:00 PM to 4:00 PM CST. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

Merck

Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.

Chemosphere (2009-03-14)
Baoliang Chen, Zaiming Chen
RESUMEN

Biochars, derived from biomass, are increasingly recognized as an environmental-friendly sorbent to abate organic pollutants. Sorption variations of biochars with their pyrolytic temperatures are evaluated. Nine biochars of orange peels with different pyrolytic temperatures (150-700 degrees C, referred as OP150-OP700) were characterized via elemental analysis, BET-N(2) surface area, and Fourier transform infrared spectroscopy. Sorption of naphthalene and 1-naphthol by the biochars in water are compared. Sorption isotherms varied from linear to Freundlich with increasing pyrolytic temperature. The respective contributions of adsorption and partition to total sorption were correlated with biochars' structural parameters. For OP150-OP600, sorption of 1-naphthol was significantly larger than naphthalene due to the former owning additional specific interactions. For 1-naphthol with high concentrations, the OP200 exhibited the maximal sorption capacity due to its largest partition and high adsorption among nine biochars. For 1-naphthol with low concentrations and naphthalene, the OP700 displayed the maximal sorption capacity. These observations provide a reference to the use of biochars as engineered sorbents for environmental applications.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
1-Naphthol, ReagentPlus®, ≥99%
En este momento no podemos mostrarle ni los precios ni la disponibilidad
Sigma-Aldrich
1-Naphthol, puriss. p.a., reag. Ph. Eur., ≥99% (GC)
En este momento no podemos mostrarle ni los precios ni la disponibilidad