Saltar al contenido
Merck

SAE0090

Sigma-Aldrich

Beta-galactoside alpha-2,6-sialyltransferase 1

≥300 units/mg protein, ST6GAL1 human recombinant, expressed in HEK 293 cells

Sinónimos:

Alpha 2,6-ST 1, B-cell antigen CD75, CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,6-sialyltransferase 1, ST6Gal I, Sialyltransferase 1

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Comisión internacional de enzimas:
UNSPSC Code:
12352202
NACRES:
NA.54

recombinant

expressed in HEK 293 cells

description

The specific activity of ST6Gal I is measured by its ability to transfer sialic acid from CMP-NANA to asialofetuin.

assay

≥95% (SDS-PAGE)

form

lyophilized powder

specific activity

≥300 units/mg protein

shipped in

ambient

storage temp.

−20°C

General description

Recombinant human Beta-galactoside alpha-2,6-sialyltransferase 1 (ST6Gal I) is expressed in human HEK 293 cells as a glycoprotein with a calculated molecular mass of 43.5 kDa (amino acids 27-406). The DTT-reduced protein migrates as a ~50 kDa polypeptide on SDS-PAGE due to glycosylation. This protein is manufactured in human cells, with no serum. The human cells expression system allows human-like glycosylation and folding, and often supports higher specific activity of the protein. The protein is produced with no artificial tags.

Biochem/physiol Actions

ST6Gal I catalyzes the transfer of CMP-N-acetylneuraminate (CMP-sialic acid, CMP-NANA) to the β-D-galactosyl-1,4-N-acetyl-D-glucosaminyl termini on glycoproteins. Sialic acids are distributed in a variety of glycolipids and glycoproteins.1 The sialic acid that is added to a galactose (Gal) can be bound either to the hydroxyl attached to carbon-3 of Gal to form an α-2,3 glycosidic linkage, or to the hydroxyl group attached to carbon-6 to form an α-2,6 glycosidic linkage.1 ST6Gal I generates a α-2,6 linkage of sialic acid on the non-reducing, terminal Galβ1 4GlcNAc residues of oligosaccharides and glycoconjugates.2

Terminal sialylation has been shown to decrease Fcγ receptor binding and increase anti-inflammatory activity,3 as well as antibody-dependent cellular cytotoxicity in different studies by reduced binding of sialylated antibody towards FcγRIIIa.4-5

This recombinant ST6Gal I product can be used to study the mode of action of the enzyme, as well as its potential inhibitors. It can also be used as a glycoengineering tool to modify glycoproteins in vitro.

CMP-N-acetylneuraminate (CMP-sialic acid, CMP-NANA) to the β-D-galactosyl-1,4-N-acetyl-D-glucosaminyl termini on glycoproteins.
Sialic acids are distributed in a variety of glycolipids and glycoproteins. The sialic acid that is added to a galactose (Gal) can be bound either to the hydroxyl attached to carbon-3 of Gal to form an α-2,3 glycosidic linkage, or to the hydroxyl group attached to carbon-6 to form an α-2,6 glycosidic linkage. ST6Gal I generates a α-2,6 linkage of sialic acid on the non-reducing, terminal Galβ1 4GlcNAc residues of oligosaccharides and glycoconjugates.

Terminal sialylation has been shown to decrease Fcγ receptor binding and increase anti-inflammatory activity, as well as antibody-dependent cellular cytotoxicity in different studies by reduced binding of sialylated antibody towards FcγRIIIa.

Unit Definition

One unit is defined as the amount of enzyme required to transfer 1.0 nanomole of sialic acid from CMP-NANA to asialofetuin per minute at pH 6.0, 37oC.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Makoto Ogata et al.
BMC biotechnology, 9, 54-54 (2009-06-09)
Sialic acid is a deoxy uronic acid with a skeleton of nine carbons which is mostly found on cell surface in animals. This sialic acid on cell surface performs various biological functions by acting as a receptor for microorganisms, viruses
Yoshikatsu Kaneko et al.
Science (New York, N.Y.), 313(5787), 670-673 (2006-08-05)
Immunoglobulin G (IgG) mediates pro- and anti-inflammatory activities through the engagement of its Fc fragment (Fc) with distinct Fcg receptors (FcgRs). One class of Fc-FcgR interactions generates pro-inflammatory effects of immune complexes and cytotoxic antibodies. In contrast, therapeutic intravenous gamma
Bernard J Scallon et al.
Molecular immunology, 44(7), 1524-1534 (2006-10-19)
Although it is now clear that certain Fc glycan structures on immunoglobulin G (IgG) antibodies (Abs) can have a dramatic influence on binding to selected Fcgamma receptors (FcgammaR) and on Fc-mediated immune functions, the effects of all known Fc glycan
Michael F Naso et al.
mAbs, 2(5), 519-527 (2010-08-19)
Covalently-linked glycans on proteins have many functional roles, some of which are still not completely understood. Antibodies have a very specific glycan modification in the Fc region that is required for mediating immune effector functions. These Fc glycans are typically
J Weinstein et al.
The Journal of biological chemistry, 257(22), 13835-13844 (1982-11-25)
A Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferse and a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase have been purified 23,000- and 860,000-fold to homogeneity from Triton CF-54 extracts of rat liver membranes. The

Artículos

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Explore tools for glycosyltransferase synthesis and modification of glycans, such as glycosyltransferases and nucleotide sugar donors.

Ver todo

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico