Saltar al contenido
Merck

S9571

Sigma-Aldrich

Anti-SUMO 2 antibody produced in rabbit

enhanced validation

~0.6 mg/mL, affinity isolated antibody, buffered aqueous solution

Sinónimos:

Anti-SMT3B, Anti-SMT3H2, Anti-Sentrin-2

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

MDL number:
UNSPSC Code:
12352203
NACRES:
NA.41

biological source

rabbit

conjugate

unconjugated

antibody form

affinity isolated antibody

antibody product type

primary antibodies

clone

polyclonal

form

buffered aqueous solution

mol wt

antigen ~15 kDa

species reactivity

human

enhanced validation

recombinant expression
Learn more about Antibody Enhanced Validation

concentration

~0.6 mg/mL

technique(s)

indirect immunofluorescence: 10-20 μg/mL using HeLa cells
western blot: 0.5-1 μg/mL using nuclear extract of HeLa cells or cell extract of HEK293-T cells transfected with human SUMO-2

UniProt accession no.

shipped in

dry ice

storage temp.

−20°C

target post-translational modification

unmodified

Gene Information

human ... SUMO2(6613)
mouse ... Sumo2(170930)

General description

Small ubiquitin-related modifier (SUMO-2) gene is mapped to human chromosome 17q25.1. Sumo-2 is related to SUMO-3 with a 86% sequence identity. It comprises a sumoylation motif at the residue lysine 11.

Specificity

Anti-SUMO-2 recognizes human SUMO-2.

Immunogen

synthetic peptide corresponding to amino acids 80-93 located at the C-terminal of human SUMO-2, conjugated to KLH. This sequence is identical in many species including rat, mouse, pig, and bovine SUMO-2 and is identical in human SUMO-3.

Application

Anti-SUMO-2 antibody produced in rabbit has been used in immunoblotting and immunofluorescence.

Biochem/physiol Actions

Small ubiquitin-related modifier (SUMO-2) is essential for the cellular defense in hyperthermic cytotoxicity. Along with SUMO-3, SUMO2 is essential for cell survival post-heat shock. SUMO-2 has the ability to exist as self-modified polymers. SUMO-2 and SUMO-3 negatively regulate interferon induction.

Physical form

Solution in 0.01 M phos­phate buffered saline, pH 7.4, containing 1% bovien serum albumin and 15 mM sodium azide.

Storage and Stability

For continuous use, store at 2-8 °C for up to one month. For extended storage, freeze in working aliquots. Repeated freezing and thawing, or storage in “frost-free” freezers, is not recommended. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use. Working dilutions should be discarded if not used within 12 hours.

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

¿No encuentra el producto adecuado?  

Pruebe nuestro Herramienta de selección de productos.

Storage Class

10 - Combustible liquids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, multi-purpose combination respirator cartridge (US)


Certificados de análisis (COA)

Busque Certificados de análisis (COA) introduciendo el número de lote del producto. Los números de lote se encuentran en la etiqueta del producto después de las palabras «Lot» o «Batch»

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

John T Crowl et al.
Proceedings of the National Academy of Sciences of the United States of America, 115(26), 6798-6803 (2018-06-13)
Detection of nucleic acids by innate immune sensors triggers the production of type I interferons (IFNs). While IFNs are essential for host defense against viral infection, dysregulated production of IFNs underlies numerous autoinflammatory diseases. We have found that the loss
Hong-Lin Su et al.
Gene, 296(1-2), 65-73 (2002-10-18)
The SUMO (small ubiquitin-like modifier) protein and ubiquitin have similar 3-D structure. Sumolyzation and ubiquitination exhibit similar biological processes for post-translational modification. However, unlike ubiquitination, which targets proteins for degradation, sumolyzation participates in a number of cellular processes such as
Rajarshi Chakrabarti et al.
Biochemical and biophysical research communications, 439(2), 209-214 (2013-09-03)
Phosphatidylinositol 4 phosphate 5 kinase 1α (PIP5K) is mainly localized in the cytosol and plasma membrane. Studies have also indicated its prominent association with nuclear speckles. The exact nature of this nuclear pool of PIP5K is not clear. Using biochemical
Filip Golebiowski et al.
Science signaling, 2(72), ra24-ra24 (2009-05-28)
Covalent conjugation of the small ubiquitin-like modifier (SUMO) proteins to target proteins regulates many important eukaryotic cellular mechanisms. Although the molecular consequences of the conjugation of SUMO proteins are relatively well understood, little is known about the cellular signals that
A B Steffensen et al.
Acta physiologica (Oxford, England), 222(3) (2017-09-10)
The voltage-gated potassium channel KV 11.1 is the molecular basis for the IKr current, which plays an important role in cardiac physiology. Its malfunction is associated with both inherited and acquired cardiac arrhythmias. Native currents differ from those in experimental

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico