Skip to Content
Merck
All Photos(1)

Documents

03-4510

Sigma-Aldrich

Butyl acetate

SAJ first grade, ≥98.0%

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3COO(CH2)3CH3
CAS Number:
Molecular Weight:
116.16
Beilstein:
1741921
EC Number:
MDL number:
UNSPSC Code:
12352108
PubChem Substance ID:

grade

SAJ first grade

vapor density

4 (vs air)

vapor pressure

15 mmHg ( 25 °C)
8 mmHg ( 20 °C)

Assay

≥98.0%

form

liquid

autoignition temp.

790 °F

expl. lim.

7.6 %

availability

available only in Japan

refractive index

n20/D 1.394 (lit.)

pH

6.2 (20 °C, 5 g/L)

bp

124-126 °C (lit.)

mp

−78 °C (lit.)

density

0.88 g/mL at 25 °C (lit.)

SMILES string

CCCCOC(C)=O

InChI

1S/C6H12O2/c1-3-4-5-8-6(2)7/h3-5H2,1-2H3

InChI key

DKPFZGUDAPQIHT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Pictograms

FlameExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Flam. Liq. 3 - STOT SE 3

Target Organs

Central nervous system

Supplementary Hazards

Storage Class Code

3 - Flammable liquids

WGK

WGK 1

Flash Point(F)

80.6 °F - closed cup

Flash Point(C)

27 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Katrin Margulis-Goshen et al.
International journal of pharmaceutics, 393(1-2), 230-237 (2010-04-21)
A new composition of a fully water-dilutable microemulsion system stabilized by natural surfactants is presented as a template for preparation of celecoxib nanoparticles. Nanoparticles are obtained as a dry powder upon rapid conversion of microemulsion droplets with dissolved celecoxib into
Cheng Teng Wong et al.
Journal of hazardous materials, 157(2-3), 480-489 (2008-02-26)
The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and
Yung-Chieh Tsao et al.
The Science of the total environment, 409(17), 3158-3165 (2011-05-31)
This study evaluated the efficacy of simultaneously employing three open-path Fourier transform infrared (OP-FTIR) spectrometers with 3-day consecutive monitoring, using an odor episode as an example. The corresponding monitoring paths were allocated among the possible emission sources of a semiconductor
Subhash Bhatia et al.
Journal of hazardous materials, 163(1), 73-81 (2008-07-25)
Adsorption behaviours of butyl acetate in air have been studied over silver-loaded Y (Si/Al=40) and ZSM-5 (Si/Al=140) zeolites. The silver metal was loaded into the zeolites by ion exchange (IE) and impregnation (IM) methods. The adsorption study was mainly conducted
Sami H Ali et al.
Bioresource technology, 102(21), 10094-10103 (2011-09-13)
Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service