as a media component for mice cardiomyocytes culture[4]
Biochem/physiol Actions
2,3-Butanedione monoxime is inhibitor of ATP-sensitive K+ and Ca2+ channels.
DRK1 is a delayed rectifier (Kv2.1) cloned K+ channel from rat brain with consensus sites for protein kinase-dependent phosphorylation that might be expected to be functionally regulated by phosphorylation. 2,3-Butanedione monoxime (BDM) chemically removes phosphate groups from many proteins, and its action on DRK1 channels was examined after expression of DRK1 cRNA in Xenopus oocytes. In two-microelectrode voltage-clamp experiments, the application of 2,3-Butanedione monoxime to the bath inhibited DRK1 current (ki = 16.6 mM, H = 0.96) rapidly and reversibly, with a time course similar to the time course of solution change within the bath. DRK1 current was inhibited at all potentials; the time course of current activation, deactivation and inactivation were unaffected by 2,3-Butanedione monoxime. In inside-out patch-clamp experiments, the application of 2,3-Butanedione monoxime to the cytoplasmic surface similarly inhibited channel activity rapidly and reversibly (ki = 10.7 mM, H = 1.01) in the absence of rephosphorylating substrates. These results are inconsistent with a phosphatase effect, because such an effect should be irreversible in cell-free, ATP-free patches. Instead, the results suggest that 2,3-Butanedione monoxime can inhibit DRK1 channels directly from inside or outside of the membrane.
Despite recent advances in our understanding of the mechanism for ventricular fibrillation (VF), important electrophysiological aspects of the development of VF still are poorly defined. It has been suggested that the onset of VF involves the disintegration of a single
Effect of strain on actomyosin kinetics in isometric muscle fibers
Siththanandan VB, et al.
Biophysical Journal, 90(10), 3653-3665 (2006)
Deficiency of mouse mast cell protease 4 mitigates cardiac dysfunctions in mice after myocardium infarction
Wang Yunzhe, et al.
Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease (2019)
Arrhythmias are benign or lethal, depending on their sustainability and frequency. To determine why lethal arrhythmias are prone to occur in diseased hearts, usually characterized by nonuniform muscle contraction, we investigated the effect of nonuniformity on sustainability and frequency of
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.