Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4, KCNN4, is a component of a potassium channel activated by calcium. It is critically involved in calcium ion transport and cell homeostasis.
Immunogen
Synthetic peptide directed towards the C terminal region of human KCNN4
Application
Anti-KCNN4 antibody produced in rabbit has been used in:
western blot analysis
immunofluorescence
staining
immunohistochemistry
Biochem/physiol Actions
KCNN4 (potassium calcium-activated channel subfamily N member 4) is part of a potentially heterotetrameric voltage-independent potassium channel that is activated by intracellular calcium. Activation is followed by membrane hyperpolarization, which promotes calcium influx. KCNN4 may be part of the predominant calcium-activated potassium channel in T-lymphocytes. Activation is followed by membrane hyperpolarization, which promotes calcium influx. The encoded protein may be part of the predominant calcium-activated potassium channel in T-lymphocytes. This gene is similar to other KCNN family potassium channel genes, but it differs enough to possibly be considered as part of a new subfamily.
Sequence
Synthetic peptide located within the following region: DLQQNLSSSHRALEKQIDTLAGKLDALTELLSTALGPRQLPEPSQQSK
Physical form
Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose.
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the
British journal of pharmacology, 168(2), 432-444 (2012-08-16)
The K(Ca) 3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of K(Ca) 3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses. We characterized the
A Novel Gene, hKCa4, Encodes the Calcium-activated Potassium Channel in Human T Lymphocytes
Logsdon NJ, et al.
The Journal of Biological Chemistry, 272(52), 32723-32726 (1997)
Epigenetic dysregulation of KCa3. 1 channels induces poor prognosis in lung cancer
Bulk E, et al.
International Journal of Cancer. Journal International Du Cancer, 137(6), 1306-1317 (2015)
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.