Skip to Content
Merck
All Photos(3)

Documents

577944

Sigma-Aldrich

Hoveyda-Grubbs Catalyst® M700

Umicore

Synonym(s):

Hoveyda-Grubbs Catalyst® 1st Generation, Hoveyda-Grubbs Catalyst® M70 (C601), Dichloro(2-isopropoxyphenylmethylene) (tricyclohexylphosphine)ruthenium(II), Dichloro(o-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium(II)

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C28H45Cl2OPRu
CAS Number:
Molecular Weight:
600.61
MDL number:
UNSPSC Code:
12161600
PubChem Substance ID:
NACRES:
NA.22

Quality Level

form

solid

reaction suitability

core: ruthenium
reagent type: catalyst
reaction type: Ring Opening Metathesis Polymerisation

mp

195-197 °C (lit.)

storage temp.

2-8°C

SMILES string

[H]\C(c1ccccc1OC(C)C)=[Ru](\Cl)Cl.C2CCC(CC2)P(C3CCCCC3)C4CCCCC4

InChI

1S/C18H33P.C10H12O.2ClH.Ru/c1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;1-8(2)11-10-7-5-4-6-9(10)3;;;/h16-18H,1-15H2;3-8H,1-2H3;2*1H;/q;;;;+2/p-2

InChI key

KMKCJXPECJFQPQ-UHFFFAOYSA-L

Application

Proven to be useful in Ring-Closing Metathesis (RCM) to form macrocycles. Also employed in a pivotal, macrocyclic ring-closing metathesis in the multi-step synthesis of an HCV protease inhibitor.

Learn more about our metathesis catalysts

Legal Information

Product of Umicore

Additional information available at http://www.pmc.umicore.com
Grubbs Catalyst is a registered trademark of Umicore AG & Co. KG

related product

Product No.
Description
Pricing

Pictograms

Flame

Signal Word

Warning

Hazard Statements

Hazard Classifications

Flam. Sol. 2

Storage Class Code

4.1B - Flammable solid hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Nathan K Yee et al.
The Journal of organic chemistry, 71(19), 7133-7145 (2006-09-09)
A multistep scalable synthesis of the clinically important hepatitis C virus (HCV) protease inhibitor BILN 2061 (1) is described. The synthesis is highly convergent and consists of two amide bond formations, one etherification, and one ring-closing metathesis (RCM) step, using
Sequential catalysis: a metathesis/dihydroxylation sequence.
Samuel Beligny et al.
Angewandte Chemie (International ed. in English), 45(12), 1900-1903 (2006-02-14)
Schrodi, Y.; Pederson, R. L.
Aldrichimica Acta, 45-45 (2007)
T M Trnka et al.
Accounts of chemical research, 34(1), 18-29 (2001-02-15)
In recent years, the olefin metathesis reaction has attracted widespread attention as a versatile carbon-carbon bond-forming method. Many new applications have become possible because of major advances in catalyst design. State-of-the-art ruthenium catalysts are not only highly active but also
Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts.
Georgios C Vougioukalakis et al.
Chemical reviews, 110(3), 1746-1787 (2009-12-17)

Related Content

Research in the Grubbs group has centered on the development and application of a suite of highly active, selective, and bench stable ruthenium alkylidene complexes capable of catalyzing versatile olefin metatheses.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service