The purpose of this report was to provide an overview of xylitol and other polyol sweeteners and dental caries for clinicians and to discuss current applications for dental practice and potential community-based public health interventions. Xylitol, like other polyol sweeteners
Co-fermentation and simultaneous saccharification of rice hull hydrolysate (RHH) were investigated for the production of ethanol and xylitol by Saccharomyces cerevisiae, Spathaspora arborariae, or the combination of both. In bioreactor cultures under oxygen limitation, S. cerevisiae was capable of metabolizing
As Saccharomyces cerevisiae cannot utilize xylose as a carbon source, expression of XYL1 coding for xylose reductase (XR) from Scheffersomyces (Pichia) stipitis enabled production of xylitol from xylose with a high yield. However, insufficient supply of NAD(P)H for XR and
Journal of dental research, 91(7 Suppl), 85S-90S (2012-09-21)
The aim of the study was to investigate the efficacy of the use of xylitol-containing tooth-wipes in preventing dental caries in young children. In a double-blinded randomized controlled clinical trial, 44 mothers with active caries and their 6- to 35-month-old
Journal of dental research, 92(6), 512-517 (2013-04-17)
The Xylitol for Adult Caries Trial was a three-year, double-blind, multi-center, randomized clinical trial that evaluated the effectiveness of xylitol vs. placebo lozenges in the prevention of dental caries in caries-active adults. The purpose of this secondary analysis was to
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.