Skip to Content
Merck
All Photos(2)

Documents

I5148

Sigma-Aldrich

Indole-3-acetic acid sodium salt

BioReagent, suitable for plant cell culture, ≥98%

Synonym(s):

3-IAA, IAA, indolylacetic acid, Heteroauxin

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C10H8NNaO2
CAS Number:
Molecular Weight:
197.17
MDL number:
UNSPSC Code:
12352106
PubChem Substance ID:
NACRES:
NA.52

grade

for molecular biology

product line

BioReagent

Assay

≥98%

form

powder

technique(s)

cell culture | plant: suitable

solubility

H2O: soluble

suitability

suitable for (Plant cell culture)

application(s)

agriculture

storage temp.

2-8°C

SMILES string

[Na+].[O-]C(=O)Cc1c[nH]c2ccccc12

InChI

1S/C10H9NO2.Na/c12-10(13)5-7-6-11-9-4-2-1-3-8(7)9;/h1-4,6,11H,5H2,(H,12,13);/q;+1/p-1

InChI key

YGSPWCVTJRFZEL-UHFFFAOYSA-M

Related Categories

General description

Indole-3-acetic acid (IAA) is a plant hormone and a natural form of phytoalexins that belongs to the class of auxins. It is synthesized by plants and plant-associated microorganisms including ectomycorrhizal, endophytic fungi, and plant growth-promoting rhizobacteria. IAA is the product of L- tryptophan metabolism.

Application

Indole-3-acetic acid (IAA) sodium salt has been used:
  • to alter the root developmental processes in Arabidopsis thaliana seedlings
  • as a standard for the determination of IAA by high-performance liquid chromatography using Chlorella sorokiniana and Azospirillum brasilense sample culture media
  • as one of the plant hormone to treat interspecific hybrids (Elaeis oleifera Cortés x Elaeis guineensis Jacq.) and study its effect on bunch formation in parthenocarpic fruits and oil production in oil palm
  • as a supplement in culture media to induce mitotic slippage in human cell lines
  • as a supplement in a shoot induction medium (SIM) for shooting and shoot elongation from explant

Biochem/physiol Actions

Indole-3-acetic acid (IAA) is a plant growth regulator. Indole-3-acetic acid induces root initiation, cell division, and cell elongation which promotes plant growth. It mediates organ development, fertility, cell orientation, and elongation. Overproduction of IAA is found to trigger ethylene production and therefore inhibit plant growth. In addition, up-regulation of IAA by pathogenic bacteria causes excess cellular division leading to gall disease in the plant.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Yao Chen et al.
mAbs, 11(6), 1089-1100 (2019-06-04)
Although peroxide and leachable metal-induced chemical modifications are among the most important quality attributes in bioprocess development, there is no mainstream characterization method covering all common modifications theoretically possible on therapeutic proteins that also gives consistent results quickly. Here, we
A reliable regeneration method in genome-editable bell pepper `Dempsey?
Won K H
Journal of Separation Science, 7, 317-317 (2021)
Yuping Shen et al.
Chembiochem : a European journal of chemical biology, 20(15), 1995-2004 (2019-03-31)
Cysteine-rich peptides (CRPs), which are disulfide-constrained peptides with 3 to 5 disulfide bonds and molecular weights of 2 to 6 kDa, are generally hyperstable and resistant to thermal, chemical, and enzymatic degradation. Herein, the discovery and characterization of a novel suite
Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense
Palacios O. A.
FEMS Microbiology Ecology, 92 (2016)
Diclofenac modified the root system architecture of Arabidopsis via interfering with the hormonal activities of auxin
Min Cho and Kangmin Kim
Journal of Hazardous Materials, 413 (2021)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service