Drug metabolism and disposition: the biological fate of chemicals, 12(5), 565-576 (1984-09-01)
Incubations of 3'-hydroxyacetanilide (3HAA) with hepatic microsomal preparations from phenobarbital-pretreated mice led to the formation of three products of aromatic hydroxylation, viz. 2',5'-, 3',4'-, and 2',3'-dihydroxyacetanilide, which were identified by GC/MS techniques and quantified by GLC analysis. NADPH-dependent covalent binding
Overdose of the popular, and relatively safe, analgesic acetaminophen (N-acetyl-p-aminophenol, APAP, paracetamol) can produce a fatal centrilobular liver injury. APAP-induced cell death was investigated in a differentiated, transforming growth factor alpha (TGFalpha)-overexpressing, hepatocyte cell line and found to occur at
Chemical research in toxicology, 2(1), 41-45 (1989-01-01)
3'-Hydroxyacetanilide (AMAP) is a nonhepatotoxic regioisomer of acetaminophen (APAP) that nonetheless does form reactive metabolites which bind to hepatic proteins. Because differences in the nature of reactive metabolites formed from AMAP and APAP may explain differences in their propensity to
Chemical research in toxicology, 8(3), 403-413 (1995-04-01)
Acetaminophen (4'-hydroxyacetanilide), a widely used analgesic/antipyretic drug, is hepatotoxic in large doses, whereas the m-hydroxy isomer of acetaminophen, 3'-hydroxyacetanilide, is not hepatotoxic. Both are oxidized by mouse liver cytochromes P-450 to reactive metabolites that bind covalently to hepatic proteins. Because
Metabolic alterations resulting from the inhibition of mitochondrial respiration by acetaminophen in vivo.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.