Skip to Content
Merck
All Photos(1)

Documents

747025

Sigma-Aldrich

PbS core-type quantum dots

oleic acid coated, fluorescence λem 1200 nm, 10 mg/mL in toluene

Synonym(s):

CANdot®, Fluorescent nanocrystals, QDs, artificial atoms

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
PbS
Molecular Weight:
239.27
UNSPSC Code:
26111700
NACRES:
NA.23

form

liquid

concentration

10 mg/mL in toluene

fluorescence

λem 1200 nm

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

Our PbS quantum dots have a fully crystalline inorganic core and are organically stabilized with an oleic acid coating, which makes their surface hydrophobic in nature. They exhibit high colloidal and thermal stability, as well as strong emissions with narrow fluorescence bands, owing to their small particle size distributions. These particles absorb all light in the UV, VIS and NIR, up to 900 nm. Their size-dependent absorption and emission properties make them suitable for different applications: such as, absorber materials in photovoltaics, detectors and photodiodes, and phosphors in IR-emitters (solid state lighting, SSL), among many others.

Legal Information

Fraunhofer CAN is a research division of the Fraunhofer IAP
CANdot is a registered trademark of Fraunhofer CAN

Signal Word

Danger

Hazard Classifications

Aquatic Chronic 3 - Asp. Tox. 1 - Flam. Liq. 2 - Repr. 1A - Skin Irrit. 2 - STOT RE 2 - STOT RE 2 Inhalation - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids

WGK

WGK 3

Flash Point(F)

39.2 °F - closed cup

Flash Point(C)

4 °C - closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting
Hsu, C.-H.;
J. Alloy Compounds, 554, 45-50 (2013)
Randy J Ellingson et al.
Nano letters, 5(5), 865-871 (2005-05-12)
We report ultra-efficient multiple exciton generation (MEG) for single photon absorption in colloidal PbSe and PbS quantum dots (QDs). We employ transient absorption spectroscopy and present measurement data acquired for both intraband as well as interband probe energies. Quantum yields
Steven A McDonald et al.
Nature materials, 4(2), 138-142 (2005-01-11)
In contrast to traditional semiconductors, conjugated polymers provide ease of processing, low cost, physical flexibility and large area coverage. These active optoelectronic materials produce and harvest light efficiently in the visible spectrum. The same functions are required in the infrared
CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application
Jiao, J.;
Materials Science in Semiconductor Processing, 16(2), 435-440 (2013)

Articles

Dye-sensitized solar cells as a promising, low-cost photovoltaic technology.

Professor Sharma and colleagues review the synthesis and applications of this novel material. This includes a discussion of the unique properties of quantum dots and their suitability for solar cell applications, along with common synthesis techniques used to develop these materials.

Professor Xiaohu Gao (University of Washington, USA) provides a overview of recent quantum dot (QD) advancements and their potential for advancing bioassay and bioimaging technologies.

Perovskite quantum dots research progresses overcoming challenges, enabling rapid development of light-emitting devices.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service