720704
Iron(III) oxide, dispersion
nanoparticles, ≤110 nm particle size, 20 wt. % in H2O
Synonym(s):
Iron oxide in water
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
form
nanoparticles
concentration
20 wt. % in H2O
particle size
≤110 nm
pH
6-8
density
1.17 g/mL±0.1 g/mL at 25 °C
SMILES string
O=[Fe]O[Fe]=O
InChI
1S/2Fe.3O
InChI key
JEIPFZHSYJVQDO-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Storage Class Code
10 - Combustible liquids
WGK
nwg
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications
Chemical Reviews, 108(6), 2064-2110 (2008)
Neurology, 81(3), 256-263 (2013-06-19)
The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. Twenty patients with presumptive or known CNS
Toxicology letters, 225(1), 57-65 (2013-12-03)
Iron oxide nanoparticles (ION), with different coatings and sizes, have attracted extensive interest in the last years to be applied in drug delivery, cancer therapy and as contrast agents in imagiologic techniques such as magnetic resonance imaging. However, the safety
Journal of biomedical nanotechnology, 9(4), 674-684 (2013-04-30)
In present study, we put forward an approach to prepare three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites via the combination of self-assembling, seed-mediated growing and multi-step chemical reduction. The Fe3O4@SiO2@Au magnetic nanocomposites were analyzed and characterized by transmission electron microscope (TEM), scanning
Journal of biomedical nanotechnology, 9(5), 751-764 (2013-06-28)
We present methodologies to functionalize iron oxide (Fe3O4) nanoparticles with biosurfactants and biocompatibility results. Positively charged Fe3O4 nanoparticles of average hydrodynamic size -26 nm is functionalized with four different molecules of interest, viz., surfactin, rhamnolipid, polyethylene glycol (PEG) and dextran.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service