Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in
Quantum confinement can dramatically slow down electron-phonon relaxation in nanoclusters. Known as the phonon bottleneck, the effect remains elusive. Using a state-of-the-art time-domain ab initio approach, we model the observed bottleneck in CdSe quantum dots and show that it occurs
Journal of nanoscience and nanotechnology, 13(1), 643-648 (2013-05-08)
CdSe nanoparticles with polystyrene (PS) brushes are obtained by "grafting through" technique starting from solely aqueously synthesized nanoparticles. Mercaptoethanol (ME) capped nanoparticles are used to achieve double bond functional groups on the surface by condensation reaction with methacryloxypropyltrimethoxysilane (MPS). PS
Environmental toxicology and chemistry, 32(6), 1288-1294 (2013-02-19)
The present study addresses the bioaccumulation behavior of cadmium selenide quantum dots by Eisenia andrei earthworms in a terrestrial environment. Earthworms were exposed to quantum dot-treated soil for up to 4 wk and analyzed for cadmium and selenium concentration using
Journal of nanoscience and nanotechnology, 12(11), 8258-8265 (2013-02-21)
Quantum dots are being widely used in physics and in the biomedical industry in recent years due to their excellent optical characteristics. However, studies have shown that cadmium selenide core-shell quantum dots exhibit cytotoxicity. The present study investigates the induction
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.