Skip to Content
Merck
All Photos(1)

Key Documents

399523

Sigma-Aldrich

Nickel(II) oxide

greener alternative

green, −325 mesh, 99%

Synonym(s):

Mononickel oxide, Nickel monooxide, Nickel oxide, Nickel(2+) oxide, Nickelous oxide

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
NiO
CAS Number:
Molecular Weight:
74.69
EC Number:
MDL number:
UNSPSC Code:
26111700
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99%

form

powder

mol wt

Mw 74.69 g/mol

composition

NiO

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

color

green

particle size

−325 mesh
<44 μm

density

6.67 g/mL at 25 °C (lit.)
6.67 g/mL

application(s)

battery manufacturing

greener alternative category

SMILES string

[Ni]=O

InChI

1S/Ni.O

InChI key

GNRSAWUEBMWBQH-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency and is intended for Molecular Solar Thermal Energy Storage Systems (MOST). Click here for more information.

Nickel(II) Oxide (NiO) is a black or greenish-black inorganic compound that serves as an important material in various industrial applications. It is commonly utilized in battery manufacturing, where it plays a crucial role in the production of nickel-based batteries. Its fine particle size, typically −325 mesh (<44 μm), enhances its reactivity and performance in electrochemical applications. In addition to battery manufacturing, Nickel(II) oxide is also used in ceramics, supercapacitors, and as a catalyst in chemical reactions. Its versatility makes it valuable in various sectors, including electronics and materials science.

Application

  • Benchmarking Nanoparticulate Metal Oxide Electrocatalysts for the Alkaline Water Oxidation Reaction: This study evaluates the electrocatalytic performance of nickel oxide for water oxidation, important for material scientists working on energy conversion technologies (S Jung et al., 2016).

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Statements

Hazard Classifications

Aquatic Chronic 4 - Carc. 1A Inhalation - Skin Sens. 1 - STOT RE 1 Inhalation

Target Organs

Lungs

Storage Class Code

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Luca Gragnaniello et al.
Physical review letters, 108(19), 195507-195507 (2012-09-26)
A bottom-up approach to produce a long-range ordered superlattice of monodisperse and isomorphic metal-oxide nanoparticles (NP) supported onto an oxide substrate is demonstrated. The synthetic strategy consists of self-assembling metallic NP on an ultrathin nanopatterned aluminum oxide template followed by
Qin-qin Xiong et al.
Nanoscale, 5(17), 7906-7912 (2013-07-16)
A Fe2O3@NiO core/shell nanorod array on carbon cloth was prepared with the aid of hydrothermal synthesis combined with subsequent chemical bath deposition. The resultant array structure is composed of Fe2O3 nanorods as the core and interconnected ultrathin NiO nanoflakes as
Ensiyeh Sharifi et al.
Biosensors & bioelectronics, 45, 260-266 (2013-03-19)
The glassy carbon (GC) electrode modified by nickel oxide nanoparticles (NiOxNPs) is proposed as a novel electrocatalytic system for the oxidation of NADH without using any electron transfer mediator. Here, chronoamperometry was used not only as a simple method for
John A Medford et al.
Nanoscale, 5(1), 155-159 (2012-11-22)
Size-dependent nanostructural transformations occurring during the H(2)-mediated reduction of hollow and porous NiO nanoparticles were investigated for controlled nanoparticle sizes of ~10 to 100 nm. Transmission electron microscopy reveals that the location and number of reduction sites strongly depend on
Feng Luan et al.
Nanoscale, 5(17), 7984-7990 (2013-07-19)
Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal

Articles

As with all types of fuel cells, a Solid Oxide Fuel Cell (SOFC) is capable of efficiently transforming chemical energy into electrical energy.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service