Skip to Content
Merck
All Photos(2)

Documents

637289

Sigma-Aldrich

Dysprosium(III) oxide

nanopowder, <100 nm particle size, 99.9% trace metals basis

Synonym(s):

Didysprosium trioxide, Dysprosia

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Dy2O3
CAS Number:
Molecular Weight:
373.00
EC Number:
MDL number:
UNSPSC Code:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.9% trace metals basis

form

nanopowder

reaction suitability

reagent type: catalyst
core: dysprosium

particle size

<100 nm

density

7.81 g/mL at 25 °C (lit.)

SMILES string

O=[Dy]O[Dy]=O

InChI

1S/2Dy.3O

InChI key

NLQFUUYNQFMIJW-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Storage Class Code

11 - Combustible Solids

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Małgorzata Norek et al.
Journal of the American Chemical Society, 130(15), 5335-5340 (2008-03-22)
The transverse 1H relaxivities of aqueous colloidal solutions of dextran coated Dy2O3 nanoparticles of different sizes were investigated at magnetic field strengths (B) between 7 and 17.6 T. The particle size with the maximum relaxivity (r2) appears to vary between
Happy et al.
Journal of nanoscience and nanotechnology, 7(3), 907-915 (2007-04-25)
The experimental parameters that control the size and size distribution of dysprosium oxide nanoparticles synthesized by homogeneous precipitation technique have been systematically investigated. The particles were characterized with respect to their size, shape, and thermal decomposition behavior. It was found
J M Peeters et al.
Physics in medicine and biology, 51(6), N127-N137 (2006-03-03)
Susceptibility markers for passive tracking need to be small in order to maintain the shape and mechanical properties of the endovascular device. Nevertheless, they also must have a high magnetic moment to induce an adequate artefact at a variety of
B Vengala Rao et al.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 71(3), 951-953 (2008-04-01)
Emission spectrum of Dy(3+):Ca(4)GdO(BO(3))(3) powder phosphor has been analyzed. Two emission bands at 492 and 588 nm with lambda(exci)=311 nm ((6)H(15/2)-->(4)L(19/2)) have been measured from this phosphor. For the intense yellow emission at 588 nm ((4)F(9/2)-->(6)H(13/2)), its lifetime has been
Masoud Salavati-Niasari et al.
Ultrasonics sonochemistry, 17(5), 870-877 (2010-03-23)
Dysprosium carbonates nanoparticles were synthesized by the reaction of dysprosium acetate and NaHCO(3) by a sonochemical method. Dysprosium oxide nanoparticles with average size about 17 nm were prepared from calcination of Dy(2)(CO(3))(3).1.7H(2)O nanoparticles. Dy(OH)(3) nanotubes were synthesized by sonication of

Articles

Magnetic materials find diverse applications from data storage to renewable energy.

Magnetic materials find diverse applications from data storage to renewable energy.

Magnetic materials find diverse applications from data storage to renewable energy.

Magnetic materials find diverse applications from data storage to renewable energy.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service