NANOG (Homeobox protein NANOG) is a member of the Nanog homeobox family of DNA-binding proteins. It is expressed in embryonic stem cells and confers pluripotency on these cells. Once embryonic stem cells become differentiated, NANOG expression is suppressed. NANOG is involved in the Hedgehog/Gli1 signaling pathway which has been implicated in the development and growth of various types of tumors. NANOG has also been identified as a key transcription factor used to generate induced pluripotent stem cells.
Evaluated by Immunocytochemistry in H9 human embryonic stem cells. Immunocytochemsitry Analysis: A 1:100 dilution of this antibody detected NANOG in H9 human embryonic stem cells.
Target description
The uncojugated parent antibody (Catalog No. MABD24) has an observed MW of 39 kDa
Physical form
Purified mouse monoclonal IgG2a conjugated to Alexa Fluor™ 488 in PBS with 0.1% sodium azide and 15mg/ml BSA.
Other Notes
Concentration: Please refer to the Certificate of Analysis for the lot-specific concentration.
Legal Information
ALEXA FLUOR is a trademark of Life Technologies
Not finding the right product?
Try our Product Selector Tool.
Storage Class Code
12 - Non Combustible Liquids
WGK
WGK 2
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Stem cell research & therapy, 12(1), 55-55 (2021-01-14)
Human induced pluripotent stem cells (hiPSCs) hold enormous promise in accelerating breakthroughs in understanding human development, drug screening, disease modeling, and cell and gene therapies. Their potential, however, has been bottlenecked in a mostly laboratory setting due to bioprocess challenges
Human induced pluripotent stem cells (hiPSCs) have generated a great deal of attention owing to their capacity for self-renewal and differentiation into the three germ layers of the body. Their discovery has facilitated a new era in biomedicine for understanding
Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively
Mutations in the oncogene PARK7, which codes for DJ-1, have been associated with early-onset autosomal recessive Parkinson's disease (PD); however, the exact role of DJ-1 in PD remains elusive. Fibroblasts from a PD patient with a uniparental disomy, 1 bp deletion
International journal of molecular medicine, 35(3), 569-578 (2014-12-20)
The present study aimed to investigate the X chromosome inactivation (XCI) status in long-term cultured human parthenogenetic embryonic stem cells. One human embryonic stem (hES) cell line and 2 human parthenogenetic embryonic stem (hPES) cell lines were subjected to long-term
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.