389293
Poly(vinyl chloride)
average Mw ~43,000, average Mn ~22,000
Synonym(s):
PVC
Sign Into View Organizational & Contract Pricing
All Photos(2)
About This Item
Recommended Products
form
powder
Quality Level
mol wt
average Mn ~22,000
average Mw ~43,000
inherent viscosity
0.51 dL/g(lit.)
density
1.4 g/mL at 25 °C (lit.)
SMILES string
ClC=C
InChI
1S/C2H3Cl/c1-2-3/h2H,1H2
InChI key
BZHJMEDXRYGGRV-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
Related Categories
General description
Poly(vinyl chloride) (PVC) is a widely utilized thermoplastic material with excellent thermo-mechanical properties.
Application
PVC can be used in a variety of viable applications such as: formation of nanobifiller for potential usage in nanoreactors, modification of pyrogenic products, preparation of PVC based aerogels which can be used as high performance thermal insulation materials
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Personal Protective Equipment
dust mask type N95 (US), Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Ultralight and Flexible Monolithic Polymer Aerogel with Extraordinary Thermal Insulation by A Facile Ambient Process
Advanced Materials Interfaces, 6(13), 1900314-1900314 (2019)
Fabrication and characterization of polyvinyl chloride/poly(styrene-co-maleic anhydride) intercalated functional nanobifiller-based composite paper
International Journal of Polymer Analysis and Characterization, 21(3), 228-243 (2016)
Compositional modification of pyrogenic products using CaCO3 and CO2 from the thermolysis of polyvinyl chloride (PVC)
Green Chemistry, 20(7), 1583-1593 (2018)
Separation and analysis of low molecular weight plasticizers in poly (vinyl chloride) tubes
Polymer Testing, 24(3), 290-300 (2005)
Applied spectroscopy, 66(11), 1286-1293 (2012-11-14)
Airborne silica dust (quartz) is common in coal mines and represents a respiratory hazard that can lead to silicosis, a potentially fatal lung disease. With an eye toward developing a portable monitoring device for rapid analysis of silica dust, laser-induced
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service