Skip to Content
Merck
All Photos(1)

Key Documents

IRMM531B

Titanium

IRMM®, certified reference material, 0.5 mm foil

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Ti
CAS Number:
Molecular Weight:
47.87
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

certified reference material

Agency

IRMM®

autoignition temp.

860 °F

manufacturer/tradename

JRC

resistivity

42.0 μΩ-cm, 20°C

bp

3287 °C (lit.)

mp

1660 °C (lit.)

density

4.5 g/mL at 25 °C (lit.)

format

matrix material

SMILES string

[Ti]

InChI

1S/Ti

InChI key

RTAQQCXQSZGOHL-UHFFFAOYSA-N

Analysis Note

For more information please see:
IRMM531B

Legal Information

IRMM is a registered trademark of European Commission

Storage Class Code

11 - Combustible Solids

WGK

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jinho Shin et al.
Journal of nanoscience and nanotechnology, 13(8), 5807-5810 (2013-07-26)
In this study, hydroxyapatite (HA) was coated on anodized titanium (Ti) surfaces through radio frequency magnetron sputtering in order to improve biological response of the titanium surface. All the samples were blasted with resorbable blasting media (RBM). RBM-blasted Ti surface
Kwi-Dug Yun et al.
Journal of nanoscience and nanotechnology, 13(6), 3864-3867 (2013-07-19)
This study examined the bone response to titanium dioxide nanotube modified implants. A total of 24 implants were placed in the femur of 4 beagles. Before placement, screw-shaped implants were classified into 3 groups; machined surface (group M), titanium dioxide
D M Rivera-Chacon et al.
Journal of biomedical nanotechnology, 9(6), 1092-1097 (2013-07-19)
Improvements in osteoconduction of implant biomaterials require focusing on the bone-implant interface, which is a complex multifactorial system. Surface topography of implants plays a crucial role at this interface. Nanostructured surfaces have been shown to promote serum protein adsorption and
Hai Liu et al.
Journal of nanoscience and nanotechnology, 13(7), 5119-5125 (2013-08-02)
In this paper, pure and Eu3+ doped TiO2 nanocrystals (NCs) have been fabricated successfully by a two steps of sol-gel and hydrothermal methods. The microstructures, morphologies and photoluminescent properties of Eu(3+)-TiO2 were investigated by X-ray diffraction (XRD), field emission scanning
Lu-Ning Wang et al.
Journal of nanoscience and nanotechnology, 13(8), 5316-5326 (2013-07-26)
Electrochemically anodized TiO2 nanotubular arrays can provide large surface areas for biological species attachment. In order to further enhance the biocompatibility of Ti medical implants, we deposited a pre-synthesized hydroxyapatite inside and on the nanotubular arrays, and examined the biocompatibility

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service