Skip to Content
Merck
All Photos(1)

Key Documents

753491

Sigma-Aldrich

Benzene-1,3,5-tricarboxaldehyde

97%

Synonym(s):

1,3,5-Triformylbenzene, Trimesaldehyde

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C9H6O3
CAS Number:
Molecular Weight:
162.14
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

Assay

97%

form

solid

mp

156-161 °C

storage temp.

2-8°C

SMILES string

O=Cc1cc(C=O)cc(C=O)c1

InChI

1S/C9H6O3/c10-4-7-1-8(5-11)3-9(2-7)6-12/h1-6H

InChI key

AEKQNAANFVOBCU-UHFFFAOYSA-N

Application

Benzene-1,3,5-tricarboxaldehyde is extensively used in the synthesis of a wide range of porous organic cages and covalent organic frameworks.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Exploring the gem-dimethyl effect in the formation of imine-based macrocycles and cages.
Madhu S, et al.
New. J. Chem., 41(17), 8721-8724 (2017)
Shan Jiang et al.
Nanoscale, 11(31), 14929-14936 (2019-07-31)
Porous Organic Cages (POCs) are an emerging class of self-assembling, porous materials with novel properties. They offer a key advantage over other porous materials in permitting facile solution processing and re-assembly. The combination of POCs with metal nanoparticles (NPs) unlocks
Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions.
Vitaku E and Dichtel W R
Journal of the American Chemical Society, 139(37), 12911-12914 (2017)
Wentao Xu et al.
Journal of environmental management, 269, 110758-110758 (2020-06-21)
Membrane separation technology is recognized as a competitive approach to remove Pb2+ from water system due to its high efficiency and low operating cost. In present study, a simple and facile approach was developed to fabricate covalent organic framework (COF)
A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages.
Briggs M E and Cooper A I
Chemistry of Materials, 29(1), 149-157 (2016)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service