Skip to Content
Merck
All Photos(2)

Key Documents

GF55954873

Cobalt

foil, 4mm disks, thickness 0.007mm, 99.9%

Synonym(s):

Cobalt, CO000120

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
Co
CAS Number:
Molecular Weight:
58.93
MDL number:
UNSPSC Code:
12141710
PubChem Substance ID:
NACRES:
NA.23

Assay

99.9%

form

foil

manufacturer/tradename

Goodfellow 559-548-73

resistivity

6.24 μΩ-cm, 20°C

diam. × thickness

4 mm × 0.007 mm

bp

2900 °C (lit.)

density

8.9 g/mL at 25 °C (lit.)

SMILES string

[Co]

InChI

1S/Co

InChI key

GUTLYIVDDKVIGB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

For updated SDS information please visit www.goodfellow.com.

Legal Information

Product of Goodfellow

Pictograms

Health hazardExclamation mark

Signal Word

Danger

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 3 - Carc. 1B - Eye Irrit. 2 - Muta. 2 - Repr. 1A - Resp. Sens. 1 - Skin Sens. 1

Storage Class Code

6.1D - Non-combustible acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

D Nayak et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 54(2), 189-193 (2001-02-24)
Heavy ion activation of natural cobalt foil with 52 MeV 11B4+ and 73 MeV 12C6+ results in the formation of carrier-free (66,67)Ge and (66,67)As radionuclides, respectively, along with their corresponding decay products, (66,67)Ga in the matrix. The carrier free gallium
Dalia Nayak et al.
Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, 65(8), 891-896 (2007-05-29)
Heavy ion activation of natural cobalt foil with 84MeV (12)C results in the formation of no-carrier-added (nca) (66,67)As radionuclides, along with their corresponding decay products, (66,67)Ge and (66,67)Ga, in the matrix. Because arsenic and germanium radionuclides are short-lived, after a
William L Griffin
The Journal of arthroplasty, 29(4), 659-660 (2014-03-25)
Ion levels have been shown to reliably predict abnormal function of the bearing surface with increased wear, but ion levels should not be used alone as a trigger for when to proceed with revision surgery with metal-metal articulations. Risk stratification
Kenneth M Unice et al.
Chemico-biological interactions, 216, 53-74 (2014-04-15)
An updated biokinetic model for human exposures to cobalt (Co) was developed based on a comprehensive set of human pharmacokinetics data collected from five male and five female volunteers who ingested ∼1 mg Co/day of a Co supplement for 3
Hao-Di Wu et al.
Journal of nanoscience and nanotechnology, 14(6), 4097-4100 (2014-04-18)
Cocrystal nanofibres of cobalt octaethylporphyrin and tetracyanoquinodimethane were prepared by a facile solution method and fully characterized by SEM, AFM, XRD, Raman, EDX, and UV-vis-NIR. The as-prepared cocrystal nanofibres had smooth surfaces and uniform dimension. When incorporated into prototype devices

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service