Iridium(I) complexes of enantiomerically pure phosphine-phosphite ligands ([Ir(Cl)(cod)(P-OP)]) efficiently catalyze the enantioselective hydrogenation of diverse C═N-containing heterocyclic compounds (benzoxazines, benzoxazinones, benzothiazinones, and quinoxalinones; 25 examples, up to 99% ee). A substrate-to-catalyst ratio as high as 2000:1 was reached.
Chemical communications (Cambridge, England), 49(31), 3230-3232 (2013-03-14)
Five iridium(III) complexes with two N-heterocyclic carbene (NHC) ligands and an ancillary ligand have been designed and successfully synthesized. With multicolor photoluminescence and low toxicity, these carbene complexes were tested, for the first time, as living cell imaging reagents and
The first α-alkylation of unactivated amides with primary alcohols is described. An effective and robust iridium pincer complex has been developed for selective α-alkylation of tertiary and secondary acetamides involving a "borrowing hydrogen" methodology. The method is compatible with alcohols
A cationic Ir(I) complex-catalyzed O-to-N-alkyl migration in 2-alkoxypyridines bearing a secondary alkyl group on the oxygen atom by C-O bond cleavage is described. The present transformation gave various N-alkylpyridones in moderate to good yields. The addition of sodium acetate played
Journal of medicinal chemistry, 56(9), 3636-3644 (2013-04-19)
The cellular behavior and toxicity effect of organometallic complexes depend largely on their peripheral ligands. In this study, we have synthesized a series of novel luminescent cationic iridium(III) complexes by tuning the ancillary N(∧)N ligand based on a structure [Ir(ppy)2(N(∧)N)](+)
Combinatorial Materials Science identifies breakthrough materials through systematic exploration, aiding material discovery.
Questions
Reviews
★★★★★ No rating value
Active Filters
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.