Saltar al contenido
Merck

Actuation of single downstream nodes in growth factor network steers immune cell migration.

Developmental cell (2023-05-24)
Dhiman Sankar Pal, Tatsat Banerjee, Yiyan Lin, Félix de Trogoff, Jane Borleis, Pablo A Iglesias, Peter N Devreotes
RESUMEN

Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility. Second, activating Ras at the cell rear generated new protrusions, reversed pre-existing polarity, and steered sustained migration in neutrophils or murine RAW 264.7 macrophages. Third, recruiting a RasGAP, RASAL3, to cell fronts extinguished protrusions and changed migration direction. Remarkably, persistent RASAL3 recruitment at stable fronts abrogated directed migration in three different chemoattractant gradients. Fourth, local recruitment of the Ras-mTORC2 effector, Akt, in neutrophils or Dictyostelium amoebae generated new protrusions and rearranged pre-existing polarity. Overall, these optogenetic effects were mTORC2-dependent but relatively independent of PI3K. Thus, receptor-independent, local activations of classical growth-control pathways directly control actin assembly, cell shape, and migration modes.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Roche
cOmplete, Mini, conjunto de inhibidores de proteasas sin EDTA, Protease Inhibitor Cocktail Tablets provided in a glass vial, Tablets provided in a glass vial
Sigma-Aldrich
Puromicina dihydrochloride from Streptomyces alboniger, powder, BioReagent, suitable for cell culture