Saltar al contenido
Merck

Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth.

Signal transduction and targeted therapy (2020-05-30)
Ming-Zhu Lei, Xu-Xu Li, Ye Zhang, Jin-Tao Li, Fan Zhang, Yi-Ping Wang, Miao Yin, Jia Qu, Qun-Ying Lei
RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is well-known for inefficient early diagnosis, with most patients diagnosed at advanced stages. Increasing evidence indicates that elevated plasma levels of branched-chain amino acids (BCAAs) are associated with an increased risk of pancreatic cancer. Branched-chain amino acid transaminase 2 (BCAT2) is an important enzyme in BCAA catabolism that reversibly catalyzes the initial step of BCAA degradation to branched-chain acyl-CoA. Here, we show that BCAT2 is acetylated at lysine 44 (K44), an evolutionarily conserved residue. BCAT2 acetylation leads to its degradation through the ubiquitin-proteasome pathway and is stimulated in response to BCAA deprivation. cAMP-responsive element-binding (CREB)-binding protein (CBP) and SIRT4 are the acetyltransferase and deacetylase for BCAT2, respectively. CBP and SIRT4 bind to BCAT2 and control the K44 acetylation level in response to BCAA availability. More importantly, the K44R mutant promotes BCAA catabolism, cell proliferation, and pancreatic tumor growth. Collectively, the data from our study reveal a previously unknown regulatory mechanism of BCAT2 in PDAC and provide a potential therapeutic target for PDAC treatment.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Millipore
Gel de afinidad de níquel HIS-Select®, (1:1 suspension in a 20% ethanol solution)
Sigma-Aldrich
Anti-SIRT4 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution, ab1