Saltar al contenido
Merck

The Cohesin Ring Uses Its Hinge to Organize DNA Using Non-topological as well as Topological Mechanisms.

Cell (2018-05-15)
Madhusudhan Srinivasan, Johanna C Scheinost, Naomi J Petela, Thomas G Gligoris, Maria Wissler, Sugako Ogushi, James E Collier, Menelaos Voulgaris, Alexander Kurze, Kok-Lung Chan, Bin Hu, Vincenzo Costanzo, Kim A Nasmyth
RESUMEN

As predicted by the notion that sister chromatid cohesion is mediated by entrapment of sister DNAs inside cohesin rings, there is perfect correlation between co-entrapment of circular minichromosomes and sister chromatid cohesion. In most cells where cohesin loads without conferring cohesion, it does so by entrapment of individual DNAs. However, cohesin with a hinge domain whose positively charged lumen is neutralized loads and moves along chromatin despite failing to entrap DNAs. Thus, cohesin engages chromatin in non-topological, as well as topological, manners. Since hinge mutations, but not Smc-kleisin fusions, abolish entrapment, DNAs may enter cohesin rings through hinge opening. Mutation of three highly conserved lysine residues inside the Smc1 moiety of Smc1/3 hinges abolishes all loading without affecting cohesin's recruitment to CEN loading sites or its ability to hydrolyze ATP. We suggest that loading and translocation are mediated by conformational changes in cohesin's hinge driven by cycles of ATP hydrolysis.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
ANTI-FLAG® M2 monoclonal antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Citrato de sodio tribásico dihydrate, ≥99%, FG
Sigma-Aldrich
Chorionic gonadotropin human, lyophilized powder, vial of ~10,000 IU
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
Dibromobimane, BioReagent, suitable for fluorescence, ≥95.0% (CHN)