L9904
Latex beads, amine-modified polystyrene, fluorescent orange
aqueous suspension, 0.1 μm mean particle size
Synonym(s):
Amine-Modified Latex Beads, Fluorescent Orange Beads
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
form
aqueous suspension
composition
Solids, 2.5%
technique(s)
cell based assay: suitable
mean particle size
0.1 μm
fluorescence
λex ~475 nm; λem ~540 nm
application(s)
cell analysis
Looking for similar products? Visit Product Comparison Guide
Application
Amine-modified polystyrene latex beads have been used to develop an electrochemical nitrite nanosensor as well as to validate a pharyngeal aspiration technique for exposing the mouse lung to respirable particles.
Latex beads, amine-modified polystyrene, fluorescent orange has been used in the preparation of nano-particles in biophysical characterization. It has also been used in the preparation of nano-particles for cytotoxicity studies in yeast and cell lines.
Storage Class Code
10 - Combustible liquids
WGK
WGK 3
Flash Point(F)
Not applicable
Flash Point(C)
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Membrane potential mediates the cellular binding of nanoparticles
Nanoscale, 5(13), 5879-5886 (2013)
Environmental science & technology, 47(7), 3417-3423 (2013-03-02)
Novel nanoparticles with unique physicochemical characteristics are being developed with increasing frequency, leading to higher probability of nanoparticle release and environmental accumulation. Therefore, it is important to assess the potential environmental and biological adverse effects of nanoparticles. In this study
Chemosphere, 149, 84-90 (2016-02-09)
The effects of surface physicochemical properties of functionalized polystyrene latex (PSL) nanoparticles (NPs) and model filamentous fungi Aspergillus oryzae and Aspergillus nidulans cultivated in different environment (aqueous and atmospheric environment) on the colloidal behavior and cytotoxicity were investigated in different
Small (Weinheim an der Bergstrasse, Germany), 16(17), e1907418-e1907418 (2020-04-01)
Understanding the property-function relation of nanoparticles in various application fields involves determining their physicochemical properties, which is still a remaining challenge to date. While a multitude of different characterization tools can be applied, these methods by themselves can only provide
Nanoscale, 5(13), 5879-5886 (2013-05-24)
The use of nanoparticles for cellular therapeutic or sensing applications requires nanoparticles to bind, or adhere, to the cell surface. While nanoparticle parameters such as size, shape, charge, and composition are important factors in cellular binding, the cell itself must
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service