Skip to Content
Merck
All Photos(1)

Documents

83695

Sigma-Aldrich

Rhodamine 110 chloride

suitable for fluorescence, BioReagent, ≥99.0% (UV)

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C20H14N2O3 · HCl
CAS Number:
Molecular Weight:
366.80
Beilstein:
4631860
EC Number:
MDL number:
UNSPSC Code:
12171500
PubChem Substance ID:
NACRES:
NA.32

product line

BioReagent

Assay

≥99.0% (UV)

form

crystals

mp

>300 °C (lit.)

solubility

ethanol: soluble
methanol: soluble

fluorescence

λex 498 nm; λem 520 nm in methanol

suitability

suitable for fluorescence

SMILES string

Cl.Nc1ccc2c(OC3=CC(=N)C=CC3=C2c4ccccc4C(O)=O)c1

InChI

1S/C20H14N2O3.ClH/c21-11-5-7-15-17(9-11)25-18-10-12(22)6-8-16(18)19(15)13-3-1-2-4-14(13)20(23)24;/h1-10,21H,22H2,(H,23,24);1H

InChI key

JNGRENQDBKMCCR-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Rhodamine 110 or R110 is a triphenylmethane dye and emits a strong green-fluorescent light. The high fluorescence is attributed to the presence of amino groups as electron donating groups. Rhodamine 110 has excitation and emission maximum at 502.4/521.6 nm, respectively.

Application

Rhodamine 110 is used for the determination of protease activity with accurate kinetic parameters. It is used to measure caspase activity in cells with induced apoptosis.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Yan Liang et al.
Journal of the American Chemical Society, 132(18), 6306-6308 (2010-04-20)
Access to native protein structure depends on precise polypeptide folding and assembly pathways. Identifying folding missteps that may lead to the nearly 40 protein misfolding diseases could feature prominently in the development of intervention strategies. Accordingly, we have investigated the
Marisa Ninivaggi et al.
Clinical chemistry, 58(8), 1252-1259 (2012-06-06)
The calibrated automated thrombogram (CAT) assay in plasma is a versatile tool to investigate patients with hypo- or hypercoagulable phenotypes. The objective was to make this method applicable for whole blood measurements. Thin-layer technology and the use of a rhodamine
Tatyana G Terentyeva et al.
Bioconjugate chemistry, 22(10), 1932-1938 (2011-09-13)
Commonly used fluorogenic substrate analogues for the detection of protease activity contain two enzyme-cleavable bonds conjugated to the fluorophore. Enzymatic cleavage follows a two-step reaction with a monoamide intermediate. This intermediate shows fluorescence at the same wavelength as the final
Ana Virel et al.
Analytical chemistry, 84(5), 2380-2387 (2012-02-14)
By site directed mutagenesis, we have produced recombinant mutants of human and mouse prethrombin-2 which are able to convert themselves autocatalytically into α-thrombin. We also have created a new method to amplify the signal of bioanalytical assays based on the
Stanislav Kalinin et al.
The Review of scientific instruments, 83(9), 096105-096105 (2012-10-02)
We present a fast hardware photon correlator implemented in a field-programmable gate array (FPGA) combined with a compact confocal fluorescence setup. The correlator has two independent units with a time resolution of 4 ns while utilizing less than 15% of

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service